Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2005 May;26(5):645-54.
doi: 10.1016/j.neurobiolaging.2004.06.013.

Age- and region-dependent alterations in Abeta-degrading enzymes: implications for Abeta-induced disorders

Affiliations
Comparative Study

Age- and region-dependent alterations in Abeta-degrading enzymes: implications for Abeta-induced disorders

Antonella Caccamo et al. Neurobiol Aging. 2005 May.

Abstract

Accumulation of amyloid beta-protein (Abeta) is a fundamental feature of certain human brain disorders such as Alzheimer's disease (AD) and Down syndrome and also of the skeletal muscle disorder inclusion body myositis (IBM). Emerging evidence suggests that the steady-state levels of Abeta are determined by the balance between production and degradation. Although the proteolytic processes leading to Abeta formation have been extensively studied, less is known about the proteases that degrade Abeta, which include insulin-degrading enzyme (IDE) and neprilysin (NEP). Here we measured the steady-state levels of these proteases as a function of age and brain/muscle region in mice and humans. In the hippocampus, which is vulnerable to AD pathology, IDE and NEP steady-state levels diminish as function of age. By contrast, in the cerebellum, a brain region not marked by significant Abeta accumulation, NEP and IDE levels either increase or remain unaltered during aging. Moreover, the steady-state levels of IDE and NEP are significantly higher in the cerebellum compared to the cortex and hippocampus. We further show that IDE is more oxidized in the hippocampus compared to the cerebellum of AD patients. In muscle, we find differential levels of IDE and NEP in fast versus slow twitch muscle fibers that varies with aging. These findings suggest that age- and region-specific changes in the proteolytic clearance of Abeta represent a critical pathogenic mechanism that may account for the susceptibility of particular brain or muscle regions in AD and IBM.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources