Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2005 May;26(5):729-38.
doi: 10.1016/j.neurobiolaging.2004.06.004.

Differential effect of retinoic acid and triiodothyronine on the age-related hypo-expression of neurogranin in rat

Affiliations
Comparative Study

Differential effect of retinoic acid and triiodothyronine on the age-related hypo-expression of neurogranin in rat

C Féart et al. Neurobiol Aging. 2005 May.

Abstract

Given the important role of retinoids and thyroid hormone for optimal brain functioning and the tenuous relationship between retinoic acid (RA) and triiodothyronine (T3) signalings, we compared the effects of RA or T3 administrations on RA and T3 nuclear receptors (RAR, RXR and TR) and on their target genes, neuromodulin (GAP43) and neurogranin (RC3) in 24-month-old rats. Quantitative real time PCR and western blot analysis allowed us to verify that retinoid and thyroid signalings and GAP43 and RC3 expression are affected by age. By in situ hybridization we observed a decreased expression of RC3 in hippocampus, striatum and cerebral cortex. RARbeta, RXRbeta/gamma and GAP43 were up-regulated by RA as well as T3 treatment. The abundance of TRalpha/beta mRNA and RC3 expression were only increased by T3 administration in the whole brain. This up-regulator effect of T3 on RC3 was only observed in the striatum. During aging, T3 become a limiting factor alone able to correct the age-related concomitant hypo-activation of retinoid and thyroid signalings and alterations of synaptic plasticity.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources