Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Mar 1;279(1):233-43.
doi: 10.1016/j.ydbio.2004.12.020.

Condensation of the central nervous system in embryonic Drosophila is inhibited by blocking hemocyte migration or neural activity

Affiliations
Free article

Condensation of the central nervous system in embryonic Drosophila is inhibited by blocking hemocyte migration or neural activity

Birgitta Olofsson et al. Dev Biol. .
Free article

Abstract

Condensation is a process whereby a tissue undergoes a coordinated decrease in size and increase in cellular density during development. Although it occurs in many developmental contexts, the mechanisms underlying this process are largely unknown. Here, we investigate condensation in the embryonic Drosophila ventral nerve cord (VNC). Two major events coincide with condensation during embryogenesis: the deposition of extracellular matrix by hemocytes, and the onset of central nervous system activity. We find that preventing hemocyte migration by removing the function of the Drosophila VEGF receptor homologue, Pvr, or by disrupting Rac1 function in these cells, inhibits condensation. In the absence of hemocytes migrating adjacent to the developing VNC, the extracellular matrix components Collagen IV, Viking and Peroxidasin are not deposited around this tissue. Blocking neural activity by targeted expression of tetanus toxin light chain or an inwardly rectifying potassium channel also inhibits condensation. We find that disrupting Rac1 function in either glia or neurons, including those located in the nerve cord, causes a similar phenotype. Our data suggest that condensation of the VNC during Drosophila embryogenesis depends on both hemocyte-deposited extracellular matrix and neural activity, and allow us to propose a mechanism whereby these processes work together to shape the developing central nervous system.

PubMed Disclaimer

Similar articles

Cited by

Publication types

Substances

LinkOut - more resources