Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2004;37(4):693-9.
doi: 10.4067/s0716-97602004000400027.

Endoplasmic reticulum calcium signaling in nerve cells

Affiliations
Review

Endoplasmic reticulum calcium signaling in nerve cells

Alexei Verkhratsky. Biol Res. 2004.

Abstract

The endoplasmic reticulum (ER) is an important organelle involved in various types of signaling in nerve cells. The ER serves as a dynamic Ca2+ pool being thus involved in rapid signaling events associated with cell stimulation by either electrical (action potential) or chemical (neurotransmitters) signals. This function is supported by Ca2+ release channels (InsP3 and ryanodine receptors) and SERCA Ca2+ pumps residing in the endomembrane. In addition the ER provides a specific environment for the posttranslational protein processing and transport of various molecules towards their final destination. In parallel, the ER acts as a "calcium tunnel," which facilitates Ca2+ movements within the cell by avoiding cytoplasmic routes. Finally the ER appears as a source of numerous signals aimed at the nucleus and involved in long-lasting adaptive cellular responses. All these important functions are controlled by intra-ER free Ca2+ which integrates various signaling events and establishes a link between fast signaling, associated with ER Ca2+ release/uptake, and long-lasting adaptive responses relying primarily on the regulation of protein synthesis. Disruption of ER Ca2+ homeostasis triggers several forms of cellular stress response and is intimately involved in neurodegeneration and neuronal cell death.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources