Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005:67:663-96.
doi: 10.1146/annurev.physiol.67.040403.101937.

Surfactant protein C biosynthesis and its emerging role in conformational lung disease

Affiliations

Surfactant protein C biosynthesis and its emerging role in conformational lung disease

Michael F Beers et al. Annu Rev Physiol. 2005.

Abstract

Surfactant protein C (SP-C) is a hydrophobic 35-amino acid peptide that co-isolates with the phospholipid fraction of lung surfactant. SP-C represents a structurally and functionally challenging protein for the alveolar type 2 cell, which must synthesize, traffic, and process a 191-197-amino acid precursor protein through the regulated secretory pathway. The current understanding of SP-C biosynthesis considers the SP-C proprotein (proSP-C) as a hybrid molecule that incorporates structural and functional features of both bitopic integral membrane proteins and more classically recognized luminal propeptide hormones, which are subject to post-translational processing and regulated exocytosis. Adding to the importance of a detailed understanding of SP-C biosynthesis has been the recent association of mutations in the proSP-C sequence with chronic interstitial pneumonias in children and adults. Many of these mutations involve either missense or deletion mutations located in a region of the proSP-C molecule that has structural homology to the BRI family of proteins linked to inherited degenerative dementias. This review examines the current state of SP-C biosynthesis with a focus on recent developments related to molecular and cellular mechanisms implicated in the emerging role of SP-C mutations in the pathophysiology of diffuse parenchymal lung disease.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources