Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2005:67:701-18.
doi: 10.1146/annurev.physiol.67.032003.154107.

Assembly of functional CFTR chloride channels

Affiliations
Review

Assembly of functional CFTR chloride channels

John R Riordan. Annu Rev Physiol. 2005.

Abstract

The assembly of the cystic fibrosis transmembrane regulator (CFTR) chloride channel is of interest from the broad perspective of understanding how ion channels and ABC transporters are formed as well as dealing with the mis-assembly of CFTR in cystic fibrosis. CFTR is functionally distinct from other ABC transporters because it permits bidirectional permeation of anions rather than vectorial transport of solutes. This adaptation of the ABC transporter structure can be rationalized by considering CFTR as a hydrolyzable-ligand-gated channel with cytoplasmic ATP as ligand. Channel gating is initiated by ligand binding when the protein is also phosphorylated by protein kinase A and made reversible by ligand hydrolysis. The two nucleotide-binding sites play different roles in channel activation. CFTR self-associates, possibly as a function of its activation, but most evidence, including the low-resolution three-dimensional structure, indicates that the channel is monomeric. Domain assembly and interaction within the monomer is critical in maturation, stability, and function of the protein. Disease-associated mutations, including the most common, DeltaF508, interfere with domain folding and association, which occur both co- and post-translationally. Intermolecular interactions of mature CFTR have been detected primarily with the N- and C-terminal tails, and these interactions have some impact not only on channel function but also on localization and processing within the cell. The biosynthetic processing of the nascent polypeptide leading to channel assembly involves transient interactions with numerous chaperones and enzymes on both sides of the endoplasmic reticulum membrane.

PubMed Disclaimer

MeSH terms

Substances

LinkOut - more resources