Sulfide binding is mediated by zinc ions discovered in the crystal structure of a hydrothermal vent tubeworm hemoglobin
- PMID: 15710902
- PMCID: PMC549462
- DOI: 10.1073/pnas.0407455102
Sulfide binding is mediated by zinc ions discovered in the crystal structure of a hydrothermal vent tubeworm hemoglobin
Abstract
Key to the remarkable ability of vestimentiferan tubeworms to thrive in the harsh conditions of hydrothermal vents are hemoglobins that permit the sequestration and delivery of hydrogen sulfide and oxygen to chemoautotrophic bacteria. Here, we demonstrate that zinc ions, not free cysteine residues, bind sulfide in vestimentiferan hemoglobins. The crystal structure of the C1 hemoglobin from the hydrothermal vent tubeworm Riftia pachyptila has been determined to 3.15 A and revealed the unexpected presence of 12 tightly bound Zn(2+) ions near the threefold axes of this D(3) symmetric hollow sphere. Chelation experiments on R. pachyptila whole-coelomic fluid and purified hemoglobins reveal a role for Zn(2+) ions in sulfide binding. Free cysteine residues, previously proposed as sulfide-binding sites in vestimentiferan hemoglobins, are found buried in surprisingly hydrophobic pockets below the surface of the R. pachyptila C1 molecule, suggesting that access of these residues to environmental sulfide is restricted. Attempts to reduce the sulfide-binding capacities of R. pachyptila hemoglobins by addition of a thiol inhibitor were also unsuccessful. These findings challenge the currently accepted paradigm of annelid hemoglobin evolution and adaptation to reducing environments.
Figures




Similar articles
-
Primary structure of the common polypeptide chain b from the multi-hemoglobin system of the hydrothermal vent tube worm Riftia pachyptila: an insight on the sulfide binding-site.Proteins. 1997 Dec;29(4):562-74. Proteins. 1997. PMID: 9408952
-
Evolution of the sulfide-binding function within the globin multigenic family of the deep-sea hydrothermal vent tubeworm Riftia pachyptila.Mol Biol Evol. 2002 Sep;19(9):1421-33. doi: 10.1093/oxfordjournals.molbev.a004205. Mol Biol Evol. 2002. PMID: 12200470
-
The loss of the hemoglobin H2S-binding function in annelids from sulfide-free habitats reveals molecular adaptation driven by Darwinian positive selection.Proc Natl Acad Sci U S A. 2003 May 13;100(10):5885-90. doi: 10.1073/pnas.1037686100. Epub 2003 Apr 29. Proc Natl Acad Sci U S A. 2003. PMID: 12721359 Free PMC article.
-
The sulfide binding function of annelid hemoglobins: relic of an old biosystem?J Inorg Biochem. 2005 Jan;99(1):142-50. doi: 10.1016/j.jinorgbio.2004.10.012. J Inorg Biochem. 2005. PMID: 15598498 Review.
-
Aspects of life development at deep sea hydrothermal vents.FASEB J. 1993 Apr 1;7(6):558-65. doi: 10.1096/fasebj.7.6.8472894. FASEB J. 1993. PMID: 8472894 Review.
Cited by
-
Genomic adaptations to chemosymbiosis in the deep-sea seep-dwelling tubeworm Lamellibrachia luymesi.BMC Biol. 2019 Nov 18;17(1):91. doi: 10.1186/s12915-019-0713-x. BMC Biol. 2019. PMID: 31739792 Free PMC article.
-
Expression and putative function of innate immunity genes under in situ conditions in the symbiotic hydrothermal vent tubeworm Ridgeia piscesae.PLoS One. 2012;7(6):e38267. doi: 10.1371/journal.pone.0038267. Epub 2012 Jun 11. PLoS One. 2012. PMID: 22701617 Free PMC article.
-
Sulfurous gases as biological messengers and toxins: comparative genetics of their metabolism in model organisms.J Toxicol. 2011;2011:394970. doi: 10.1155/2011/394970. Epub 2011 Nov 10. J Toxicol. 2011. PMID: 22131987 Free PMC article.
-
Difference in sulfur regulation mechanism between tube-dwelling and free-moving polychaetes sympatrically inhabiting deep-sea hydrothermal chimneys.Zoological Lett. 2023 Oct 4;9(1):18. doi: 10.1186/s40851-023-00218-5. Zoological Lett. 2023. PMID: 37789380 Free PMC article.
-
Cooccurring Activities of Two Autotrophic Pathways in Symbionts of the Hydrothermal Vent Tubeworm Riftia pachyptila.Appl Environ Microbiol. 2021 Aug 11;87(17):e0079421. doi: 10.1128/AEM.00794-21. Epub 2021 Aug 11. Appl Environ Microbiol. 2021. PMID: 34190607 Free PMC article.
References
-
- Johnson, K. S., Childress, J. J., Hessler, R. R., Sakamoto-Arnold, C. M. & Beehler, C. L. (1988) Deep-Sea Res. 35, 1723–1744.
-
- Childress, J. J. & Fisher, C. R. (1992) Oceanogr. Mar. Biol. Ann. Rev. 30, 337–441.
-
- Fisher, C. R., Childress, J. J. & Sanders, N. K. (1988) Symbiosis 5, 229–246.
-
- Powell, M. A. & Somero, G. N. (1986) Biol. Bull. (Woods Hole, Mass.) 171, 274–290.
-
- Arp, A. J., Childress, J. J. & Fisher, C. R. (1985) Bull. Biol. Soc. Wash. 6, 289–300.
Publication types
MeSH terms
Substances
Associated data
- Actions
- Actions
- Actions
- Actions
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources