Cadherin switching: essential for behavioral but not morphological changes during an epithelium-to-mesenchyme transition
- PMID: 15713751
- DOI: 10.1242/jcs.01634
Cadherin switching: essential for behavioral but not morphological changes during an epithelium-to-mesenchyme transition
Abstract
Epithelium-to-mesenchyme transitions (EMTs) are characterized by morphological and behavioral changes in cells. During an EMT, E-cadherin is downregulated while N-cadherin is upregulated. The goal of this study was to understand the role cadherin switching plays in EMT using a classical model system: transforming growth factor beta1 (TGF-beta1)-mediated EMT in mammary epithelial cells. We showed that stress fibers and focal adhesions are increased, and cell-cell junctions are decreased in response to TGF-beta1. Moreover, these changes were reversible upon removal of TGF-beta1. Downregulation of E-cadherin and upregulation of N-cadherin were both transcriptional. Neither experimental knockdown nor experimental overexpression of N-cadherin interfered with the morphological changes. In addition, the morphological changes associated with EMT preceded the downregulation of E-cadherin. Interestingly, TGF-beta1-induced motility in N-cadherin-knockdown cells was significantly reduced. Together, these data suggest that cadherin switching is necessary for increased motility but is not required for the morphological changes that accompany EMT.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials
Miscellaneous
