Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2005 May;67(5):1556-65.
doi: 10.1124/mol.104.005082. Epub 2005 Feb 17.

Marked depletion of glycosylation sites in HIV-1 gp120 under selection pressure by the mannose-specific plant lectins of Hippeastrum hybrid and Galanthus nivalis

Affiliations
Comparative Study

Marked depletion of glycosylation sites in HIV-1 gp120 under selection pressure by the mannose-specific plant lectins of Hippeastrum hybrid and Galanthus nivalis

Jan Balzarini et al. Mol Pharmacol. 2005 May.

Abstract

The plant lectins from Hippeastrum hybrid (HHA) and Galanthus nivalis (GNA) are 50,000-D tetramers showing specificity for alpha-(1,3) and/or alpha-(1,6)-mannose oligomers. They inhibit HIV-1 infection at a 50% effective concentration of 0.2 to 0.3 microg/ml. Escalating HHA or GNA concentrations (up to 500 microg/ml) led to the isolation of three HIV-1(III(B)) strains in CEM T cell cultures that were highly resistant to HHA and GNA, several other related mannose-specific plant lectins, and the monoclonal antibody 2G12, modestly resistant to the mannose-specific cyanovirin, which is derived from a blue-green alga, but fully susceptible to other HIV entry inhibitors as well as HIV reverse transcriptase inhibitors. These mutant virus strains were devoid of up to seven or eight of 22 glycosylation sites in the viral envelope glycoprotein gp120 because of mutations at the Asn or Thr/Ser sites of the N-glycosylation motifs. In one of the strains, a novel glycosylation site was created near a deleted glycosylation site. The affected glycosylation sites were predominantly clustered in regions of gp120 that are not involved in the direct interaction with either CD4, CCR5, CXCR4, or gp41. The mutant viruses containing the deleted glycosylation sites were markedly more infectious in CEM T-cell cultures than wild-type virus.

PubMed Disclaimer

Publication types

LinkOut - more resources