Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 May;146(5):2369-75.
doi: 10.1210/en.2004-1266. Epub 2005 Feb 17.

The role of the vagal nerve in peripheral PYY3-36-induced feeding reduction in rats

Affiliations

The role of the vagal nerve in peripheral PYY3-36-induced feeding reduction in rats

Shuichi Koda et al. Endocrinology. 2005 May.

Abstract

Peptide YY (PYY), an anorectic peptide, is secreted postprandially from the distal gastrointestinal tract. PYY(3-36), the major form of circulating PYY, binds to the hypothalamic neuropeptide Y Y2 receptor (Y2-R) with a high-affinity, reducing food intake in rodents and humans. Additional gastrointestinal hormones involved in feeding, including cholecystokinin, glucagon-like peptide 1, and ghrelin, transmit satiety or hunger signals to the brain via the vagal afferent nerve and/or the blood stream. Here we determined the role of the afferent vagus nerve in PYY function. Abdominal vagotomy abolished the anorectic effect of PYY(3-36) in rats. Peripheral administration of PYY(3-36) induced Fos expression in the arcuate nucleus of sham-operated rats but not vagotomized rats. We showed that Y2-R is synthesized in the rat nodose ganglion and transported to the vagal afferent terminals. PYY(3-36) stimulated firing of the gastric vagal afferent nerve when administered iv. Considering that Y2-R is present in the vagal afferent fibers, PYY(3-36) could directly alter the firing rate of the vagal afferent nerve via Y2-R. We also investigated the effect of ascending fibers from the nucleus of the solitary tract on the transmission of PYY(3-36)-mediated satiety signals. In rats, bilateral midbrain transections rostral to the nucleus of the solitary tract also abolished PYY(3-36)-induced reductions in feeding. This study indicates that peripheral PYY(3-36) may transmit satiety signals to the brain in part via the vagal afferent pathway.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources