Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1979 Jul 27;171(1):85-99.
doi: 10.1016/0006-8993(79)90734-0.

Monitoring 5-hydroxytryptamine release in the brain of the freely moving unanaesthetized rat using in vivo voltammetry

Monitoring 5-hydroxytryptamine release in the brain of the freely moving unanaesthetized rat using in vivo voltammetry

C A Marsden et al. Brain Res. .

Abstract

The possibility of using in vivo voltammetry to monitor 5-hydroxytryptamine (5-HT) release from brain tissue in freely moving unanaesthetized rats has been examined. A potential (+0.2 to +1.0 V) was applied to a micrographite electrode stereotaxically placed within a specific brain region and current changes following the oxidation of electroactive compounds in the vicinity of the electrode tip were recorded. Administration of p-chloroamphetamine (5 mg/kg) produced a large increase in current in the striatum and this could be prevented by pretreatment with p-chlorophenylalanine (150 mg/kg X 2) to deplete brain 5-HT or Fluoxetine (10 mg/kg) which prevents the uptake of p-chloroamphetamine by 5-HT neurones. Fluoxetine (10 mg/kg) caused a small but long lasting increase in current. Stimulation of the median raphe nucleus produced a marked and rapid rise in current in the hippocampus but a much smaller one in the striatum. This response could also be prevented by 24 h pretreatment with p-chlorophenylalanine (150 mg/kg). Seven days after p-chlorophenylalanine administration raphe stimulation again produced an increase in current. Rats under barbiturate anaesthesia showed no clear increase in current either after p-chloroamphetamine or raphe stimulation, indicating that barbiturates may affect neurotransmitter release. The results suggest that 5-HT release can be monitored in the freely moving unanaesthetized rat using in vivo voltammetry, and that a moderate decrease in brain 5-HT concentration leads to a substantial inhibition of drug or stimulation induced release of 5-HT.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources