Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Mar 18;96(5):551-7.
doi: 10.1161/01.RES.0000159388.61313.47. Epub 2005 Feb 17.

Metabolic inhibition alters subcellular calcium release patterns in rat ventricular myocytes: implications for defective excitation-contraction coupling during cardiac ischemia and failure

Affiliations
Free article

Metabolic inhibition alters subcellular calcium release patterns in rat ventricular myocytes: implications for defective excitation-contraction coupling during cardiac ischemia and failure

Gary H Fukumoto et al. Circ Res. .
Free article

Abstract

Metabolic inhibition (MI) contributes to contractile failure during cardiac ischemia and systolic heart failure, in part due to decreased excitation-contraction (E-C) coupling gain. To investigate the underlying mechanism, we studied subcellular Ca2+ release patterns in whole cell patch clamped rat ventricular myocytes using two-dimensional high-speed laser scanning confocal microscopy. In cells loaded with the Ca2+ buffer EGTA (5 mmol/L) and the fluorescent Ca2+-indicator fluo-3 (1 mmol/L), depolarization from -40 to 0 mV elicited a striped pattern of Ca2+ release. This pattern represents the simultaneous activation of multiple Ca2+ release sites along transverse-tubules. During inhibition of both oxidative and glycolytic metabolism using carbonyl cyanide-p-trifluoromethoxyphenylhydrazone (FCCP, 50 nmol/L) and 2-deoxyglucose (2-DG, 10 mmol/L), there was a decrease in inward Ca2+ current (ICa), the spatially averaged Ca2+ transient, and E-C coupling gain, but no reduction in sarcoplasmic reticulum Ca2+ content. The striped pattern of subcellular Ca2+ release became fractured, or disappeared altogether, corresponding to a marked decrease in the area of the cell exhibiting organized Ca2+ release. There was no significant change in the intensity or kinetics of local Ca2+ release. The mechanism is not fully explained by dephosphorylation of L-type Ca2+ channels, because a similar degree of ICa"rundown" in control cells did NOT result in fracturing of the Ca2+ release pattern. We conclude that metabolic inhibition interferes with E-C coupling by (1) reducing trigger Ca2+, and (2) directly inhibiting sarcoplasmic reticulum Ca2+ release site open probability.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources