Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2004:88:111-35.
doi: 10.1007/b99259.

Compartmentalization and transport in beta-lactam antibiotics biosynthesis

Affiliations
Review

Compartmentalization and transport in beta-lactam antibiotics biosynthesis

M E Evers et al. Adv Biochem Eng Biotechnol. 2004.

Abstract

Classical strain improvement of beta-lactam producing organisms by random mutagenesis has been a powerful tool during the last century. Current insights in the biochemistry and genetics of beta-lactam production, in particular in the filamentous fungus Penicillium chrysogenum, however, make a more directed and rational approach of metabolic pathway engineering possible. Besides the need for efficient genetic methods, a thorough understanding is needed of the metabolic fluxes in primary, intermediary and secondary metabolism. Controlling metabolic fluxes can be achieved by adjusting enzyme activities and metabolite levels in such a way that the main flow is directed towards the desired product. In addition, compartmentalization of specific parts of the beta-lactam biosynthesis pathways provides a way to control this pathway by clustering enzymes with their substrates inside specific membrane bound structures sequestered from the cytosol. This compartmentalization also requires specific membrane transport steps of which the details are currently uncovered.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources