Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2005 Feb 17;45(4):575-85.
doi: 10.1016/j.neuron.2004.12.053.

The mechanism of intrinsic amplification of hyperpolarizations and spontaneous bursting in striatal cholinergic interneurons

Affiliations
Free article
Comparative Study

The mechanism of intrinsic amplification of hyperpolarizations and spontaneous bursting in striatal cholinergic interneurons

Charles J Wilson. Neuron. .
Free article

Abstract

Striatal cholinergic interneurons pause their ongoing firing in response to sensory stimuli that have acquired meaning as a signal for learned behavior. In slices, these cells exhibit both spontaneous activity patterns and spontaneous pauses very similar to those seen in vivo. The mechanisms responsible for ongoing firing and spontaneous pauses were studied in striatal slices using perforated patch recordings. All hyperpolarizations, whether spontaneous or generated by current injection, were amplified and shaped by two hyperpolarization-activated currents. Hyperpolarization onsets were regeneratively amplified by a potassium current (KIR) whose activation promoted further hyperpolarization. The termination of hyperpolarizations was controlled by a time-dependent nonspecific cation current (HCN). The duration and even the sizes of spontaneous and driven hyperpolarizations and pauses in spontaneous activity in cholinergic interneurons are largely autonomous properties of the neuron, rather than reflections of characteristics of the input eliciting the response.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources