Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2005 May;313(2):888-95.
doi: 10.1124/jpet.104.080853. Epub 2005 Feb 18.

Inhibition of human ether-a-go-go-related gene K+ channel and IKr of guinea pig cardiomyocytes by antipsychotic drug trifluoperazine

Affiliations
Comparative Study

Inhibition of human ether-a-go-go-related gene K+ channel and IKr of guinea pig cardiomyocytes by antipsychotic drug trifluoperazine

Se-Young Choi et al. J Pharmacol Exp Ther. 2005 May.

Abstract

Trifluoperazine, a commonly used antipsychotic drug, has been known to induce QT prolongation and torsades de pointes, which can cause sudden death. We studied the effects of trifluoperazine on the human ether-a-go-go-related gene (HERG) channel expressed in Xenopus oocytes and on the delayed rectifier K(+) current of guinea pig cardiomyocytes. The application of trifluoperazine showed a dose-dependent decrease in current amplitudes at the end of voltage steps and tail currents of HERG. The IC(50) for a trifluoperazine block of HERG current progressively decreased according to depolarization: IC(50) values at -40, 0, and +40 mV were 21.6, 16.6, and 9.29 microM, respectively. The voltage dependence of the block could be fitted with a monoexponential function, and the fractional electrical distance was estimated to be delta = 0.65. The block of HERG by trifluoperazine was use-dependent, exhibiting more rapid onset and greater steady-state block at higher frequencies of activation; there was partial relief of the block with decreasing frequency. In guinea pig ventricular myocytes, bath applications of 0.5 and 2 microM trifluoperazine at 36 degrees C blocked the rapidly activating delayed rectifier K(+) current by 32.4 and 72.9%, respectively; however, the same concentrations of trifluoperazine failed to significantly block the slowly activating delayed rectifier K(+) current. Our findings suggest the arrhythmogenic side effect of trifluoperazine is caused by a blockade of HERG and the rapid component of the delayed rectifier K(+) current rather than by the blockade of the slow component.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources