Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Mar;11(3):298-304.
doi: 10.1038/nm1198. Epub 2005 Feb 20.

The fibrin-derived peptide Bbeta15-42 protects the myocardium against ischemia-reperfusion injury

Affiliations

The fibrin-derived peptide Bbeta15-42 protects the myocardium against ischemia-reperfusion injury

Peter Petzelbauer et al. Nat Med. 2005 Mar.

Abstract

In the event of a myocardial infarction, current interventions aim to reopen the occluded vessel to reduce myocardial damage and injury. Although reperfusion is essential for tissue salvage, it can cause further damage and the onset of inflammation. We show a novel anti-inflammatory effect of a fibrin-derived peptide, Bbeta15-42. This peptide competes with the fibrin fragment N-terminal disulfide knot-II (an analog of the fibrin E1 fragment) for binding to vascular endothelial (VE)-cadherin, thereby preventing transmigration of leukocytes across endothelial cell monolayers. In acute or chronic rat models of myocardial ischemia-reperfusion injury, Bbeta15-42 substantially reduces leukocyte infiltration, infarct size and subsequent scar formation. The pathogenic role of fibrinogen products is further confirmed in fibrinogen knockout mice, in which infarct size was substantially smaller than in wild-type animals. Our findings conclude that the interplay of fibrin fragments, leukocytes and VE-cadherin contribute to the pathogenesis of myocardial damage and reperfusion injury. The naturally occurring peptide Bbeta15-42 represents a potential candidate for reperfusion therapy in humans.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources