Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Mar 1;21(5):2062-77.
doi: 10.1021/la048055s.

Scaling of the kinetics of slow aggregation and gel formation for a fluorinated polymer colloid

Affiliations

Scaling of the kinetics of slow aggregation and gel formation for a fluorinated polymer colloid

Peter Sandkühler et al. Langmuir. .

Abstract

The aggregation and gelation kinetics in moderately concentrated (0.004 </= phi(0) </= 0.1) colloidal dispersions of fluorinated polymer particles has been studied. The aggregation was adjusted to proceed slowly enough to allow a convenient characterization of the kinetics through static and dynamic light scattering on quenched and diluted samples. A population balance model based on second-order aggregation rates is developed to compute the time evolution of the cluster mass distribution, from which we calculate the values of the average radii and structure factor measured by light scattering, so as to allow a direct comparison between measured and calculated quantities. The model suggests the introduction of a dimensionless time which allows the scaling of all the aggregation data on unique master curves defined by only two parameters: the exponent of the power-law aggregation kernel, lambda, and the aggregate fractal dimension, d(f). The predicted master curves were observed experimentally, which confirms the validity of the aggregation model and allows the unique determination of the kinetic and structural parameters of the aggregation process. The cluster growth behavior, although significantly slower than DLCA, shows power-law kinetics rather than the exponential one typical of RLCA and the cluster structure is characterized by an unexpectedly small fractal dimension, d(f) = 1.7. The occurrence of gelation has been characterized using small amplitude oscillatory shearing to monitor the time evolution of the elastic modulus. It is found that also these curves, together with the gel time value, scale with the stability ratio of primary particles for a given solid volume fraction. We further use the model to calculate the cumulative occupied volume fraction of the growing aggregates and quantify in this way the increasing space filling, which is solid volume fraction dependent. The experimentally determined dimensionless gel times, which are also solid volume fraction dependent, scale then directly with the dimensionless time to reach a certain degree of the space filling in the model. This finding suggests that, like the aggregation kinetics, the gelation kinetics is governed by a second-order rate process.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources