Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004;4(3):293-309.

Modeling and simulation of biological systems with stochasticity

Affiliations
  • PMID: 15724281

Modeling and simulation of biological systems with stochasticity

Tan Chee Meng et al. In Silico Biol. 2004.

Abstract

Mathematical modeling is a powerful approach for understanding the complexity of biological systems. Recently, several successful attempts have been made for simulating complex biological processes like metabolic pathways, gene regulatory networks and cell signaling pathways. The pathway models have not only generated experimentally verifiable hypothesis but have also provided valuable insights into the behavior of complex biological systems. Many recent studies have confirmed the phenotypic variability of organisms to an inherent stochasticity that operates at a basal level of gene expression. Due to this reason, development of novel mathematical representations and simulations algorithms are critical for successful modeling efforts in biological systems. The key is to find a biologically relevant representation for each representation. Although mathematically rigorous and physically consistent, stochastic algorithms are computationally expensive, they have been successfully used to model probabilistic events in the cell. This paper offers an overview of various mathematical and computational approaches for modeling stochastic phenomena in cellular systems.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources