Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Jan-Feb;21(1):37-45.
doi: 10.3928/1081-597X-20050101-09.

Potentially accommodating intraocular lenses--an in vitro and in vivo study using three-dimensional high-frequency ultrasound

Affiliations

Potentially accommodating intraocular lenses--an in vitro and in vivo study using three-dimensional high-frequency ultrasound

Oliver Stachs et al. J Refract Surg. 2005 Jan-Feb.

Abstract

Purpose: To investigate the accommodative performance of new intraocular lenses (IOL) using the advantages of three-dimensional ultrasound biomicroscopy.

Methods: An in vitro simulation device was designed to study IOL performance using an artificial capsular bag and a stretching device. The haptic region of the Akkommodative 1CU (HumanOptics AG) and CrystaLens AT-45 (Eyeonics Inc) was visualized in vitro in three dimensions, using an in-house developed three-dimensional ultrasound biomicroscope. The in vitro results were used to describe the in vivo situation in four patients with accommodative implants.

Results: The haptic position and angulation in consideration of the accommodation state was distinguished and analyzed. In the simulation model, a maximal angulation change of 4.5 degrees and 4.3 degrees and a maximal forward shift of 0.33 mm and 0.28 mm was observed for the AT-45 and 1CU, respectively. In vivo, a change in haptic angulation <100 and a maximal forward shift of 0.50 mm was observed for the 1CU. These changes correspond to a theoretical approximate value of 0.50 diopters.

Conclusions: The in vitro simulation device examined with three-dimensional ultrasound biomicroscopy provided information on the accommodative performance of these potentially accommodative IOL designs. Using three-dimensional ultrasound biomicroscopy, corresponding changes in haptic angulation during pharmacological-induced accommodation were observed.

PubMed Disclaimer

Comment in

LinkOut - more resources