Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2005:70:69-103.
doi: 10.1016/S0083-6729(05)70003-0.

Structural and functional properties of CCN proteins

Affiliations
Review

Structural and functional properties of CCN proteins

Amy W Rachfal et al. Vitam Horm. 2005.

Abstract

The CCN family currently comprises six members (CCN1-6) that regulate diverse cell functions, including mitogenesis, adhesion, apoptosis, extracellular matrix (ECM) production, growth arrest, and migration. These properties can result in a multiplicity of effects during development, differentiation, wound healing, and disease states, such as tumorigenesis and fibrosis. CCN proteins have emerged as major regulators of chondrogenesis, angiogenesis, and fibrogenesis. CCN proteins are mosaic in nature and consist of up to four structurally conserved modules, at least two of which are involved in binding to cell surfaces via molecules that include integrins, heparan sulfate proteoglycans, and low-density lipoprotein receptor-related protein. CCN proteins use integrins as signal transducing receptors to regulate context-dependent responses in individual cell types. The involvement of integrins in mediating CCN signaling allows for considerable plasticity in response because some effects are specific for certain integrin subtypes and integrin signaling is coordinated with other signaling pathways in the cell. In addition to their own biological properties, CCN proteins regulate the functions of other bioactive molecules (e.g., growth factors) via direct binding interactions. CCN molecules demonstrate complex multifaceted modes of action and regulation and have emerged as important matricellular regulators of cell function.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources