In vitro activity of structurally diverse nucleoside analogs against human immunodeficiency virus type 1 with the K65R mutation in reverse transcriptase
- PMID: 15728915
- PMCID: PMC549267
- DOI: 10.1128/AAC.49.3.1139-1144.2005
In vitro activity of structurally diverse nucleoside analogs against human immunodeficiency virus type 1 with the K65R mutation in reverse transcriptase
Abstract
Human immunodeficiency virus type 1 (HIV-1) with a lysine-to-arginine substitution at codon 65 (HIV-1(65R)) of reverse transcriptase (RT) can rapidly emerge in patients being treated with specific combinations of nucleoside analog RT inhibitors (NRTIs). A better understanding of the activity of approved and investigational NRTIs against HIV-1(65R) is needed to select optimal therapy for patients infected with this mutant and to devise strategies to prevent its emergence. Therefore, we tested a broad panel of NRTIs that differed by enantiomer, pseudosugar, and base component against HIV-1(65R) to determine how NRTI structure affects activity. Drug susceptibilities of recombinant wild-type (HIV-1(65K)) or mutant HIV-1(65R) were determined using a single-replication-cycle susceptibility assay with P4/R5 cells and/or a multiple-replication-cycle susceptibility assay with MT-2 cells. All D, L, and acyclic NRTIs were significantly less active against HIV-1(65R) than against HIV-1(65K) except for analogs containing a 3'-azido moiety. Pseudosugar structure and base component but not enantiomer influenced NRTI activity against HIV-1(65R). These findings support the inclusion of 3'-azido-3'-deoxythymidine in drug combinations to treat patients having HIV-1(65R) and to prevent its emergence.
Figures

References
-
- Arion, D., G. Borkow, Z. Gu, M. A. Wainberg, and M. A. Parniak. 1996. The K65R mutation confers increased DNA polymerase processivity to HIV-1 reverse transcriptase. J. Biol. Chem. 271:19860-19864. - PubMed
-
- Bazmi, H. Z., J. L. Hammond, S. C. Cavalcanti, C. K. Chu, R. F. Schinazi, and J. W. Mellors. 2000. In vitro selection of mutations in the human immunodeficiency virus type 1 reverse transcriptase that decrease susceptibility to (−)-β-d-dioxolane-guanosine and suppress resistance to 3′-azido-3′-deoxythymidine. Antimicrob. Agents Chemother. 44:1783-1788. - PMC - PubMed
-
- Foli, A., K. M. Sogocio, B. Anderson, M. Kavlick, M. W. Saville, M. A. Wainberg, Z. Gu, J. M. Cherrington, H. Mitsuya, and R. Yarchoan. 1996. In vitro selection and molecular characterization of human immunodeficiency virus type 1 with reduced sensitivity to 9-[2-(phosphonomethoxy)ethyl]adenine (PMEA). Antivir. Res. 32:91-98. - PubMed
-
- Gallant, J. E., S. Staszewski, A. L. Pozniak, E. DeJesus, J. M. Suleiman, M. D. Miller, D. F. Coakley, B. Lu, J. J. Toole, A. K. Cheng, and the 903 Study Group. 2004. Efficacy and safety of tenofovir DF vs stavudine in combination therapy in antiretroviral-naive patients: a 3-year randomized trial. JAMA 292:191-201. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources