Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2005 Jan-Feb;32(1-2):128-31.
doi: 10.1111/j.1440-1681.2005.04141.x.

Reorganization of the human motor cortex by sensory signals: a selective review

Affiliations
Review

Reorganization of the human motor cortex by sensory signals: a selective review

Timothy S Miles. Clin Exp Pharmacol Physiol. 2005 Jan-Feb.

Abstract

1. The normal human motor cortex can be made to reorganize by repeated stimulation of proprioceptive inputs, with or without concurrent stimulation of the motor cortex by transcranial magnetic nerve stimulation. Appropriate stimulation induces a focal increase in the excitability of corticospinal projections to specific muscles and, possibly, an increase in the area of the cortex projecting to those muscles. 2. We have shown that repeated stimulation on several successive days causes this 'plastic' reorganization to persist for at least several days. We have also used this approach to determine whether increases in the excitability of the motor cortex can be induced in stroke patients (in whom cortical excitability is usually depressed) and whether this is accompanied by functional changes. 3. The results of these studies were mixed but, in patients in whom plastic changes were induced, there were improvements and sometimes marked improvements in both motor function and some electrophysiological parameters. The reasons for the inconsistent results are not clear, but do not appear to relate to the site, size or nature of the lesion.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources