Incremental training of support vector machines
- PMID: 15732393
- DOI: 10.1109/TNN.2004.836201
Incremental training of support vector machines
Abstract
We propose a new algorithm for the incremental training of support vector machines (SVMs) that is suitable for problems of sequentially arriving data and fast constraint parameter variation. Our method involves using a "warm-start" algorithm for the training of SVMs, which allows us to take advantage of the natural incremental properties of the standard active set approach to linearly constrained optimization problems. Incremental training involves quickly retraining a support vector machine after adding a small number of additional training vectors to the training set of an existing (trained) support vector machine. Similarly, the problem of fast constraint parameter variation involves quickly retraining an existing support vector machine using the same training set but different constraint parameters. In both cases, we demonstrate the computational superiority of incremental training over the usual batch retraining method.
Similar articles
-
Associative memory design using support vector machines.IEEE Trans Neural Netw. 2006 Sep;17(5):1165-74. doi: 10.1109/TNN.2006.877539. IEEE Trans Neural Netw. 2006. PMID: 17001978
-
Incremental communication for adaptive resonance theory networks.IEEE Trans Neural Netw. 2005 Jan;16(1):132-44. doi: 10.1109/TNN.2004.839357. IEEE Trans Neural Netw. 2005. PMID: 15732394
-
Sequential information processing using time-delay connections in ontogenic CALM networks.IEEE Trans Neural Netw. 2005 Jan;16(1):145-59. doi: 10.1109/TNN.2004.839355. IEEE Trans Neural Netw. 2005. PMID: 15732395
-
Biological applications of support vector machines.Brief Bioinform. 2004 Dec;5(4):328-38. doi: 10.1093/bib/5.4.328. Brief Bioinform. 2004. PMID: 15606969 Review.
-
Survey of clustering algorithms.IEEE Trans Neural Netw. 2005 May;16(3):645-78. doi: 10.1109/TNN.2005.845141. IEEE Trans Neural Netw. 2005. PMID: 15940994 Review.
Cited by
-
Classifier Personalization for Activity Recognition Using Wrist Accelerometers.IEEE J Biomed Health Inform. 2019 Jul;23(4):1585-1594. doi: 10.1109/JBHI.2018.2869779. Epub 2018 Sep 12. IEEE J Biomed Health Inform. 2019. PMID: 30222588 Free PMC article.
-
Hierarchical Wireless Multimedia Sensor Networks for Collaborative Hybrid Semi-Supervised Classifier Learning.Sensors (Basel). 2007 Nov 13;7(11):2693-2722. doi: 10.3390/s7112693. Sensors (Basel). 2007. PMID: 28903256 Free PMC article.
-
Severity Detection for the Coronavirus Disease 2019 (COVID-19) Patients Using a Machine Learning Model Based on the Blood and Urine Tests.Front Cell Dev Biol. 2020 Jul 31;8:683. doi: 10.3389/fcell.2020.00683. eCollection 2020. Front Cell Dev Biol. 2020. PMID: 32850809 Free PMC article.
-
A Strong Machine Learning Classifier and Decision Stumps Based Hybrid AdaBoost Classification Algorithm for Cognitive Radios.Sensors (Basel). 2019 Nov 20;19(23):5077. doi: 10.3390/s19235077. Sensors (Basel). 2019. PMID: 31757117 Free PMC article.
-
Online least squares one-class support vector machines-based abnormal visual event detection.Sensors (Basel). 2013 Dec 12;13(12):17130-55. doi: 10.3390/s131217130. Sensors (Basel). 2013. PMID: 24351629 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources