Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1992 May 1;148(9):2859-66.

Mast cell proteoglycans modulate the secretagogue, proteoglycanase, and amidolytic activities of dog mast cell chymase

Affiliations
  • PMID: 1573274

Mast cell proteoglycans modulate the secretagogue, proteoglycanase, and amidolytic activities of dog mast cell chymase

C P Sommerhoff et al. J Immunol. .

Abstract

Chymase, a potent secretagogue for airway gland serous cells, is stored in secretory granules and released from mast cells together with proteoglycans. To investigate the hypothesis tha tproteoglycans modulate chymase-induced effects, we studied the influence of proteoglycans purified from dog mastocytoma cells on chymase-induced secretion from cultured bovine airway gland serous cells. Heparin proteoglycans reduced the chymase-induced secretory response, whereas glycosaminoglycans and chondroitin sulfate proteoglycans had less of an effect. Chymase released together with proteoglycans from activated mast cells caused secretion comparable to that caused by purified chymase reconstituted with purified proteoglycans. Despite partial inhibition by exocytosed proteoglycans, the secretagogue activity of chymase remains substantial compared to that of histamine. However, proteoglycans virtually abolished chymase-induced degradation of the products of serous cell secretion. Although the secretagogue and proteoglycanase activities of chymase are inhibited by most classes of mast cell granule-associated glycans, the amidolytic activity of chymase toward tripeptide 4-nitroanilide substrates is augmented. These findings suggest that mast cell proteoglycans modulate the secretagogue, proteoglycanase, and peptidase activity of chymase, and the results predict that the extent of this modulation in vivo depends on the nature of the proteoglycans with which chymase is released from mast cells.

PubMed Disclaimer

Similar articles

Cited by

Publication types