Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2005 Jan;87(1):99-109.
doi: 10.1016/j.biochi.2004.10.019.

Positive and negative regulation of insulin signaling through IRS-1 phosphorylation

Affiliations
Review

Positive and negative regulation of insulin signaling through IRS-1 phosphorylation

Philippe Gual et al. Biochimie. 2005 Jan.

Abstract

This review will provide insight on the current understanding of the regulation of insulin signaling in both physiological and pathological conditions through modulations that occur with regards to the functions of the insulin receptor substrate 1 (IRS1). While the phosphorylation of IRS1 on tyrosine residue is required for insulin-stimulated responses, the phosphorylation of IRS1 on serine residues has a dual role, either to enhance or to terminate the insulin effects. The activation of PKB in response to insulin propagates insulin signaling and promotes the phosphorylation of IRS1 on serine residue in turn generating a positive-feedback loop for insulin action. Insulin also activates several kinases and these kinases act to induce the phosphorylation of IRS1 on specific sites and inhibit its functions. This is part of the negative-feedback control mechanism induced by insulin that leads to termination of its action. Agents such as free fatty acids, cytokines, angiotensin II, endothelin-1, amino acids, cellular stress and hyperinsulinemia, which induce insulin resistance, lead to both activation of several serine/threonine kinases and phosphorylation of IRS1. These agents negatively regulate the IRS1 functions by phosphorylation but also via others molecular mechanisms (SOCS expression, IRS degradation, O-linked glycosylation) as summarized in this review. Understanding how these agents inhibit IRS1 functions as well as identification of kinases involved in these inhibitory effects may provide novel targets for development of strategies to prevent insulin resistance.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources