Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Mar;23(2):420-4.
doi: 10.1016/j.orthres.2004.08.026.

Effect of acute nerve root compression on endoneurial fluid pressure and blood flow in rat dorsal root ganglia

Affiliations
Free article

Effect of acute nerve root compression on endoneurial fluid pressure and blood flow in rat dorsal root ganglia

Tamaki Igarashi et al. J Orthop Res. 2005 Mar.
Free article

Abstract

The objective of the current study was to test the hypothesis that crush injury to nerve root increases endoneurial fluid pressure (EFP) and decreases blood flow in the associated dorsal root ganglion (DRG). A total of 21 adult, female Sprague-Dawley rats had their left L5 nerve root and DRG exposed. The L5 nerve root was clamped for 2 s with a vascular suture clip just proximal to the DRG (compression group). Sham-operated animals without compression were used for control (control group). EFP was recorded with a servo-null micropipette system using a glass micropipette with tip diameter of 4 mum before and after 3 h of treatment. After the final measurement of EFP, DRG was excised and processed for histology. Blood flow in the DRG was continuously monitored by laser Doppler flow meter for 3 h. Three hours after treatment, EFP was 4.7+/-2.7 cm H(2)O in the compression group and 2.2+/-1.2 cm H(2)O in the control group (P<0.05). Edema was the principal pathologic findings seen consistently in the DRG from animals in the compression group. Blood flow in the compression group was reduced 10 min after compression. This reduction was statistically significant compared with that of the control (P<0.01). An acute compression to the nerve root increased endoneurial edema, increased EFP in the associated DRG, and reduced DRG blood flow. This combination of increased EFP and decreased blood flow in the DRG may result in neuronal ischemia and sensory dysfunction. These acute pathophysiologic changes may thus have a role in the pathogenesis of low back pain and sciatica due to disc herniation and spinal canal stenosis.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources