Physicochemical perspectives on DNA microarray and biosensor technologies
- PMID: 15734557
- DOI: 10.1016/j.tibtech.2005.01.004
Physicochemical perspectives on DNA microarray and biosensor technologies
Abstract
Detection and sequence-identification of nucleic acid molecules is often performed by binding, or hybridization, of specimen "target" strands to immobilized, complementary "probe" strands. A familiar example is provided by DNA microarrays used to carry out thousands of solid-phase hybridization reactions simultaneously to determine gene expression patterns or to identify genotypes. The underlying molecular process, namely sequence-specific recognition between complementary probe and target molecules, is fairly well understood in bulk solution. However, this knowledge proves insufficient to adequately understand solid-phase hybridization. For example, equilibrium binding constants for solid-phase hybridization can differ by many orders of magnitude relative to solution values. Kinetics of probe-target binding are affected. Surface interactions, electrostatics and polymer phenomena manifest themselves in ways not experienced by hybridizing strands in bulk solution. The emerging fundamental understanding provides important insights into application of DNA microarray and biosensor technologies.
Similar articles
-
Computer simulation study of probe-target hybridization in model DNA microarrays: effect of probe surface density and target concentration.J Chem Phys. 2007 Oct 14;127(14):144912. doi: 10.1063/1.2787618. J Chem Phys. 2007. PMID: 17935444
-
Introduction: array technology - an overview.Methods Mol Biol. 2007;381:1-36. doi: 10.1007/978-1-59745-303-5_1. Methods Mol Biol. 2007. PMID: 17984512
-
Detection of DNA mutations using a capacitive micro-membrane array.Biosens Bioelectron. 2010 Dec 15;26(4):1588-92. doi: 10.1016/j.bios.2010.07.119. Epub 2010 Aug 4. Biosens Bioelectron. 2010. PMID: 20728330
-
Microfluidic DNA microarray analysis: a review.Anal Chim Acta. 2011 Feb 14;687(1):12-27. doi: 10.1016/j.aca.2010.11.056. Epub 2010 Dec 17. Anal Chim Acta. 2011. PMID: 21241842 Review.
-
DNA biosensors and microarrays.Chem Rev. 2008 Jan;108(1):109-39. doi: 10.1021/cr0684467. Epub 2007 Dec 21. Chem Rev. 2008. PMID: 18095717 Review. No abstract available.
Cited by
-
DNA/RNA Electrochemical Biosensing Devices a Future Replacement of PCR Methods for a Fast Epidemic Containment.Sensors (Basel). 2020 Aug 18;20(16):4648. doi: 10.3390/s20164648. Sensors (Basel). 2020. PMID: 32824787 Free PMC article. Review.
-
Kinetics of oligonucleotide hybridization to DNA probe arrays on high-capacity porous silica substrates.Biophys J. 2007 Sep 1;93(5):1661-76. doi: 10.1529/biophysj.106.103275. Epub 2007 May 11. Biophys J. 2007. PMID: 17496028 Free PMC article.
-
Hybridization behavior of mixed DNA/alkylthiol monolayers on gold: characterization by surface plasmon resonance and 32P radiometric assay.Anal Chem. 2006 May 15;78(10):3326-34. doi: 10.1021/ac052138b. Anal Chem. 2006. PMID: 16689533 Free PMC article.
-
Array feature size influences nucleic acid surface capture in DNA microarrays.Proc Natl Acad Sci U S A. 2007 May 15;104(20):8223-8. doi: 10.1073/pnas.0606054104. Epub 2007 May 7. Proc Natl Acad Sci U S A. 2007. PMID: 17485675 Free PMC article.
-
Solution-phase vs surface-phase aptamer-protein affinity from a label-free kinetic biosensor.PLoS One. 2013 Sep 17;8(9):e75419. doi: 10.1371/journal.pone.0075419. eCollection 2013. PLoS One. 2013. PMID: 24069412 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources