Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Feb 15;65(4):1244-50.
doi: 10.1158/0008-5472.CAN-04-1911.

Oncogenic K-RAS is required to maintain changes in cytoskeletal organization, adhesion, and motility in colon cancer cells

Affiliations

Oncogenic K-RAS is required to maintain changes in cytoskeletal organization, adhesion, and motility in colon cancer cells

Claire B Pollock et al. Cancer Res. .

Abstract

RAS oncogenes are thought to play a role at multiple stages of tumorigenesis. The role and mechanisms by which RAS oncogenes maintain the transformed state of human cancer cells are poorly understood. Here, we have studied the role of oncogenic K-RAS in maintaining cytoskeletal disruption, cell adhesion and motility in metastatic colon carcinoma cells. Targeted deletion of K-RAS(G13D) from HCT116 colon carcinoma cells restored their ability to assemble stress fibers and focal adhesions/complexes, accompanied by increased cell-matrix adhesion and reduced motility. We further show that oncogenic K-Ras induces high Rho activity, but uncouples Rho from stress fiber formation. This uncoupling required the maintenance of high levels of the activator protein-1 family member, Fra-1, via a mitogen-activated protein/extracellular signal-regulated kinase-dependent pathway. We also show that PI3-kinase signaling is required for the motility of HCT116 cells downstream of oncogenic K-Ras. Our findings suggest that mutated K-RAS oncogenes are essential for maintenance of the transformed and invasive phenotype of human colon cancer cells.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources