Induction of apoptosis in primary meningioma cultures by fenretinide
- PMID: 15735044
- DOI: 10.1158/0008-5472.CAN-04-0786
Induction of apoptosis in primary meningioma cultures by fenretinide
Abstract
Fenretinide, a synthetic retinoid that induces apoptosis in tumor cells in vitro, is being evaluated in clinical trials as a chemotherapeutic agent against several malignancies. Due to its ease of administration, long-term tolerability, and low incidence of long-term side effects, we explored its potential as a therapeutic agent against meningiomas by examining its efficacy in vitro against such cells in primary culture. Cells, cultured from freshly resected benign, atypical, or malignant meningiomas, were exposed to fenretinide (10 mumol/L). Treatment effects were assessed using flow cytometry, Western blot analysis, semiquantitative reverse transcription-PCR for retinoid receptor expression, and changes in insulin-like growth factor-I (IGF-I)-induced proliferation. Fenretinide induced apoptosis in the three grades of meningioma primary cells tested, as shown by the appearance of a sub-G(1) fraction in flow cytometric analysis and by the detection of poly-adenosyl ribonucleotidyl phosphorylase cleavage indicating caspase activation. Fenretinide treatment also increased levels of the death receptor DR5 and caused mitochondrial membrane depolarization. The levels of the retinoid receptors, retinoic acid receptor alpha and retinoid X receptor gamma, were up-regulated in response to fenretinide, suggestive of ligand-induced receptor up-regulation. IGF-I-induced proliferation in the meningioma cells was abolished by fenretinide. We conclude that fenretinide induces apoptosis in all three histologic subtypes of meningioma and exerts diverse cellular effects, including DR5 up-regulation, modulation of retinoid receptor levels, and inhibition of IGF-I-induced proliferation. These results provide preliminary evidence that fenretinide has activity against meningiomas and suggest that further studies are warranted to explore its potential as a therapeutic agent against meningiomas.
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
