Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1992 Feb;31(2):327-35.
doi: 10.1002/jnr.490310214.

Regional distribution of iron and iron-regulatory proteins in the brain in aging and Alzheimer's disease

Affiliations

Regional distribution of iron and iron-regulatory proteins in the brain in aging and Alzheimer's disease

J R Connor et al. J Neurosci Res. 1992 Feb.

Abstract

It is well established that iron, which is of considerable importance for normal neurological function, is highly regulated in all organ systems. However, until recently, iron regulation in the nervous system has received little attention. This study quantitatively compares the levels of the major iron-regulatory proteins, transferrin and ferritin, and iron itself in three cerebral cortical regions of the human brain from material collected at autopsy. Three groups were studied: 1) normal adult (under 65 yr of age), 2) aged (greater than 65), and 3) Alzheimer's disease. Normally, transferrin is more abundant in white matter than in gray matter. Ferritin is approximately 10x more abundant than transferrin throughout the brain regions examined and is evenly distributed, as is iron, in the gray and white matter. In Alzheimer's disease transferrin is consistently decreased particularly in the white matter of the various cerebral cortical regions examined whereas the iron and ferritin changes are inconsistent. The observations in this study are consistent with our general hypothesis that iron homeostasis is disrupted in the aging brain and the alterations in iron-regulatory proteins are exacerbated in Alzheimer's disease. The decrease in transferrin levels could indicate a decreased mobility and subsequent utilization of iron in the brain. Such a decrease in iron availability could play a significant role in neuronal degeneration and increased peroxidative damage known to occur in Alzheimer's disease.

PubMed Disclaimer

Publication types

LinkOut - more resources