Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2005 Mar;13(3):111-8.
doi: 10.1016/j.tim.2005.01.007.

Reactive oxygen species and development in microbial eukaryotes

Affiliations
Review

Reactive oxygen species and development in microbial eukaryotes

Jesús Aguirre et al. Trends Microbiol. 2005 Mar.

Abstract

Reactive oxygen species (ROS) have been regarded as inevitable harmful by-products of aerobic metabolism. Growing evidence, however, suggests that ROS play important physiological roles. This raises questions about the pathways that different groups of organisms use to produce and sense ROS. In microbial eukaryotes, recent data show (i) increased ROS levels during cell differentiation, (ii) the existence of ROS-producing enzymes, such as NADPH oxidases (NOX), (iii) the involvement of NOX in developmental processes, and (iv) a conservation in the signal-transduction mechanisms used to detect ROS. This shows that manipulation of reactive species, as strategy to regulate cell differentiation, is ubiquitous in eukaryotes and suggests that such strategy was selected early in evolution.

PubMed Disclaimer

Publication types

LinkOut - more resources