Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2005 Jan-Feb;11(1-2):1-18.
doi: 10.1089/ten.2005.11.1.

Mediation of biomaterial-cell interactions by adsorbed proteins: a review

Affiliations
Review

Mediation of biomaterial-cell interactions by adsorbed proteins: a review

Cameron J Wilson et al. Tissue Eng. 2005 Jan-Feb.

Abstract

An appropriate cellular response to implanted surfaces is essential for tissue regeneration and integration. It is well described that implanted materials are immediately coated with proteins from blood and interstitial fluids, and it is through this adsorbed layer that cells sense foreign surfaces. Hence, it is the adsorbed proteins, rather than the surface itself, to which cells initially respond. Diverse studies using a range of materials have demonstrated the pivotal role of extracellular adhesion proteins--fibronectin and vitronectin in particular--in cell adhesion, morphology, and migration. These events underlie the subsequent responses required for tissue repair, with the nature of cell surface interactions contributing to survival, growth, and differentiation. The pattern in which adhesion proteins and other bioactive molecules adsorb thus elicits cellular reactions specific to the underlying physicochemical properties of the material. Accordingly, in vitro studies generally demonstrate favorable cell responses to charged, hydrophilic surfaces, corresponding to superior adsorption and bioactivity of adhesion proteins. This review illustrates the mediation of cell responses to biomaterials by adsorbed proteins, in the context of osteoblasts and selected materials used in orthopedic implants and bone tissue engineering. It is recognized, however, that the periimplant environment in vivo will differ substantially from the cell-biomaterial interface in vitro. Hence, one of the key issues yet to be resolved is that of the interface composition actually encountered by osteoblasts within the sequence of inflammation and bone regeneration.

PubMed Disclaimer

LinkOut - more resources