Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2005 Feb;102(2):318-27.
doi: 10.3171/jns.2005.102.2.0318.

Multimodal metabolic imaging of cerebral gliomas: positron emission tomography with [18F]fluoroethyl-L-tyrosine and magnetic resonance spectroscopy

Affiliations
Comparative Study

Multimodal metabolic imaging of cerebral gliomas: positron emission tomography with [18F]fluoroethyl-L-tyrosine and magnetic resonance spectroscopy

Frank Willi Floeth et al. J Neurosurg. 2005 Feb.

Abstract

Object: The purpose of this study was to determine the predictive value of [18F]fluoroethyl-L-tyrosine (FET)-positron emission tomography (PET) and magnetic resonance (MR) spectroscopy for tumor diagnosis in patients with suspected gliomas.

Methods: Both FET-PET and MR spectroscopy analyses were performed in 50 consecutive patients with newly diagnosed intracerebral lesions supposed to be diffuse gliomas on contrast-enhanced MR imaging. Lesion/brain ratios of FET uptake greater than 1.6 were considered positive, that is, indicative of tumor. Results of MR spectroscopy were considered positive when N-acetylaspartate (NAA) was decreased in conjunction with an absolute increase of choline (Cho) and an NAA/Cho ratio of 0.7 or less. An FET lesion/brain ratio, an NAA/Cho ratio, and signal abnormalities on MR images were compared with histological findings in neuronavigated biopsy specimens. The FET lesion/brain ratio and the NAA/Cho ratio were identified as significant independent predictors for the histological identification of tumor tissue. The accuracy in distinguishing neoplastic from nonneoplastic tissue could be increased from 68% with the use of MR imaging alone to 97% with MR imaging in conjunction with FET-PET and MR spectroscopy. Sensitivity and specificity for tumor detection were 100 and 81% for MR spectroscopy and 88 and 88% for FET-PET, respectively. Results of histological studies did not reveal tumor tissue in any of the lesions that were negative on FET-PET and MR spectroscopy. In contrast, a tumor diagnosis was made in 97% of the lesions that were positive with both methods.

Conclusions: In patients with intracerebral lesions supposed to be diffuse gliomas on MR imaging, FET-PET and MR spectroscopy analyses markedly improved the diagnostic efficacy of targeted biopsies.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources