Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Mar 9;127(9):2866-7.
doi: 10.1021/ja0425583.

Catalytic asymmetric synthesis of chiral allylic esters

Affiliations

Catalytic asymmetric synthesis of chiral allylic esters

Stefan F Kirsch et al. J Am Chem Soc. .

Abstract

Trichloroacetimidate derivatives of prochiral (Z)-2-alken-1-ols react at room temperature with carboxylic acids to give chiral 3-acyloxy-1-alkenes in high enantiopurity in the presence of di-mu-acetatobis[(eta5-(S)-(pR)-2-(2'-(4'-methylethyl)oxazolinyl)cyclopentadienyl,1-C,3'-N)(eta4-tetraphenylcyclobutadiene)cobalt]dipalladium (COP-OAc) or its enantiomer. This reaction has broad scope, proceeds with predictable high stereoinduction, is accomplished at room temperature using high substrate concentrations and low catalyst loadings, and likely proceeds by a novel mechanism.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Yield and enantioselectivity in forming (R)-3-acetoxy-1-hexene (4b) using enantiomerically pure palladium(II) complexes under the conditions specified in equation 4
Scheme 1
Scheme 1
Discovery of Palladium-Catalyzed 3-Acyloxy-1-alkene Synthesis

Similar articles

Cited by

References

    1. Enantioenriched allylic esters are a ubiquitous intermediate for the synthesis of complex molecules. Selected recent examples include: Shimizu Y, Shi S-L, Usuda H, Kanai M, Shibasaki M. Angew. Chem., Int. Ed. 2010;49:1103–1106. Crimmins MT, Jacobs DL. Org. Lett. 2009;11:2695–2698. Stivala CE, Zakarian A. J. Am. Chem. Soc. 2008;130:3774–3776.

    1. For a comprehensive review of the synthesis of allylic alcohols, see: Hodgson DM, Humphreys PG. In: Science of Synthesis: Houben-Weyl Methods of Molecular Transformations. Clayden JP, editor. Vol. 36. Stuttgart: Thieme; 2007. pp. 583–665.

    1. Enzymatic kinetic resolution: García-Urdiales E, Alfonso I, Gotor V. Chem. Rev. 2005;105:313–354. Carrea G, Riva S. Angew. Chem., Int. Ed. 2000;39:2226–2254. Drauz K, Waldmann H, editors. Enzyme Catalysis in Organic Synthesis. Weinheim, Germany: VCH; 1995. Faber K. Biotransformations in Organic Chemistry. 3rd ed. Berlin: Springer; 1997. pp. 201–205.

    1. Palladium-catalyzed kinetic resolution: Ebner DC, Bagdanoff JT, Ferreira EM, McFadden RM, Caspi DD, Trend RM, Stoltz BM. Chem. Eur. J. 2009;15:12978–12992. Gligorich KM, Sigman MS. Chem. Commun. 2009:3854–3867. Trend RM, Stoltz BM. J. Am. Chem. Soc. 2008;130:15957–15966. Mueller JA, Cowell A, Chandler BD, Sigman MS. J. Am. Chem. Soc. 2005;127:14817–14824.

    1. Sandoval CA, Ohkuma T, Muñiz K, Noyori R. J. Am. Chem. Soc. 2003;125:13490–13503. - PubMed
    2. Noyori R, Ohkuma T. Angew. Chem. Int. Ed. 2001;40:40–73. - PubMed
    3. Corey EJ, Helal CJ. Angew. Chem. Int. Ed. 1998;37:1986–2012. - PubMed

Publication types