Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Mar 10;48(5):1576-87.
doi: 10.1021/jm049274d.

Bisaryloxime ethers as potent inhibitors of transthyretin amyloid fibril formation

Affiliations

Bisaryloxime ethers as potent inhibitors of transthyretin amyloid fibril formation

Steven M Johnson et al. J Med Chem. .

Abstract

Amyloid fibril formation by the plasma protein transthyretin (TTR), requiring rate-limiting tetramer dissociation and monomer misfolding, is implicated in several human diseases. Amyloidogenesis can be inhibited through native state stabilization, mediated by small molecule binding to TTR's primarily unoccupied thyroid hormone binding sites. New native state stabilizers have been discovered herein by the facile condensation of arylaldehydes with aryloxyamines affording a bisarylaldoxime ether library. Of the library's 95 compounds, 31 were active inhibitors of TTR amyloid formation in vitro. The bisaryloxime ethers selectively stabilize the native tetrameric state of TTR over the dissociative transition state under amyloidogenic conditions, leading to an increase in the dissociation activation barrier. Several bisaryloxime ethers bind selectively to TTR in human blood plasma over the plethora of other plasma proteins, a necessary attribute for efficacy in vivo. While bisarylaldoxime ethers are susceptible to degradation by N-O bond cleavage, this process is slowed by their binding to TTR. Furthermore, the degradation rate of many of the bisarylaldoxime ethers is slow relative to the half-life of plasma TTR. The bisaryloxime ether library provides valuable structure-activity relationship insight for the development of structurally analogous inhibitors with superior stability profiles, should that prove necessary.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources