Aminoglycosides are captured from both periplasm and cytoplasm by the AcrD multidrug efflux transporter of Escherichia coli
- PMID: 15743938
- PMCID: PMC1064028
- DOI: 10.1128/JB.187.6.1923-1929.2005
Aminoglycosides are captured from both periplasm and cytoplasm by the AcrD multidrug efflux transporter of Escherichia coli
Abstract
To understand better the mechanisms of resistance-nodulation-division (RND)-type multidrug efflux pumps, we examined the Escherichia coli AcrD pump, whose typical substrates, aminoglycosides, are not expected to diffuse spontaneously across the lipid bilayer. The hexahistidine-tagged AcrD protein was purified and reconstituted into unilamellar proteoliposomes. Its activity was measured by the proton flux accompanying substrate transport. When the interior of the proteoliposomes was acidified, the addition of aminoglycosides to the external medium stimulated proton efflux and the intravesicular accumulation of radiolabeled gentamicin, suggesting that aminoglycosides can be captured and transported from the external medium in this system (corresponding to cytosol). This activity required the presence of AcrA within the proteoliposomes. Interestingly, the increase in proton efflux also occurred when aminoglycosides were present only in the intravesicular space. This result suggested that AcrD can also capture aminoglycosides from the periplasm to extrude them into the medium in intact cells, acting as a "periplasmic vacuum cleaner."
Figures





Comment in
-
Vacuuming the periplasm.J Bacteriol. 2005 Mar;187(6):1879-83. doi: 10.1128/JB.187.6.1879-1883.2005. J Bacteriol. 2005. PMID: 15743933 Free PMC article. Review. No abstract available.
Similar articles
-
Substrate specificity of the RND-type multidrug efflux pumps AcrB and AcrD of Escherichia coli is determined predominantly by two large periplasmic loops.J Bacteriol. 2002 Dec;184(23):6490-8. doi: 10.1128/JB.184.23.6490-6499.2002. J Bacteriol. 2002. PMID: 12426336 Free PMC article.
-
Cryo-EM Structures of AcrD Illuminate a Mechanism for Capturing Aminoglycosides from Its Central Cavity.mBio. 2023 Feb 28;14(1):e0338322. doi: 10.1128/mbio.03383-22. Epub 2023 Jan 10. mBio. 2023. PMID: 36625574 Free PMC article.
-
AcrA dependency of the AcrD efflux pump in Salmonella enterica serovar Typhimurium.J Antibiot (Tokyo). 2011 Jun;64(6):433-7. doi: 10.1038/ja.2011.28. Epub 2011 Apr 20. J Antibiot (Tokyo). 2011. PMID: 21505470
-
[The role of cell wall organization and active efflux pump systems in multidrug resistance of bacteria].Mikrobiyol Bul. 2007 Apr;41(2):309-27. Mikrobiyol Bul. 2007. PMID: 17682720 Review. Turkish.
-
AcrAB and related multidrug efflux pumps of Escherichia coli.J Mol Microbiol Biotechnol. 2001 Apr;3(2):215-8. J Mol Microbiol Biotechnol. 2001. PMID: 11321576 Review.
Cited by
-
Isolation and characterization of VceC gain-of-function mutants that can function with the AcrAB multiple-drug-resistant efflux pump of Escherichia coli.J Bacteriol. 2006 Jun;188(11):3757-62. doi: 10.1128/JB.00038-06. J Bacteriol. 2006. PMID: 16707668 Free PMC article.
-
Mechanisms of Resistance to Aminoglycoside Antibiotics: Overview and Perspectives.Medchemcomm. 2016 Jan 1;7(1):11-27. doi: 10.1039/C5MD00344J. Epub 2015 Sep 21. Medchemcomm. 2016. PMID: 26877861 Free PMC article.
-
Beyond Antimicrobial Resistance: Evidence for a Distinct Role of the AcrD Efflux Pump in Salmonella Biology.mBio. 2016 Nov 22;7(6):e01916-16. doi: 10.1128/mBio.01916-16. mBio. 2016. PMID: 27879336 Free PMC article.
-
Characterization of all RND-type multidrug efflux transporters in Vibrio parahaemolyticus.Microbiologyopen. 2013 Oct;2(5):725-42. doi: 10.1002/mbo3.100. Epub 2013 Jul 27. Microbiologyopen. 2013. PMID: 23894076 Free PMC article.
-
Characterization and Molecular Determinants for β-Lactam Specificity of the Multidrug Efflux Pump AcrD from Salmonella typhimurium.Antibiotics (Basel). 2021 Dec 6;10(12):1494. doi: 10.3390/antibiotics10121494. Antibiotics (Basel). 2021. PMID: 34943706 Free PMC article.
References
-
- Akama, H., T. Matsuura, S. Kashiwagi, H. Yoneyama, T. Tsukihara, A. Nakagawa, and T. Nakae. 2004. Crystal structure of the membrane fusion protein, MexA of the multidrug transporter in Pseudomonas aeruginosa. J. Biol. Chem. 279:25939-25942. - PubMed
-
- Avila-Sakar, A. J., S. Misaghi, E. M. Wilson-Kubalek, K. H. Downing, H. Zgurskaya, H. Nikaido, and E. Nogales. 2001. Lipid-layer crystallization and preliminary three-dimensional structural analysis of AcrA, the periplasmic component of a bacterial multidrug efflux pump. J. Struct. Biol. 136:81-88. - PubMed
-
- Clement, N. R., and J. M. Gould. 1981. Pyranine (8-hydroxy-1,3,6-pyrenetrisulfonate) as a probe of internal aqueous hydrogen ion concentration in phospholipid vesicles. Biochemistry 20:1534-1544. - PubMed
-
- Davidson, A. L., and H. Nikaido. 1991. Purification and characterization of the membrane-associated components of the maltose transport system from Escherichia coli. J. Biol. Chem. 266:8946-8951. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases