Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Dec;22(6):402-5.

[Analysis of surface electromyography on repetitive lifting task-induced fatigue of back muscles]

[Article in Chinese]
Affiliations
  • PMID: 15748468

[Analysis of surface electromyography on repetitive lifting task-induced fatigue of back muscles]

[Article in Chinese]
Jing Chen et al. Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi. 2004 Dec.

Abstract

Objective: Using surface electromyography (SEMG) technique to evaluate repetitive lifting task-induced fatigue of back muscles.

Methods: Thirteen volunteers lifted and lowered an 8 kg weight from floor to waist level for 100 times. Fatigue in the erector spinae muscles was quantified by comparing the frequency content of the EMG signal during static contractions performed before, and immediately after the 100 lifts.

Results: EMG average amplitude rose gradually during 100 lifts, the difference was significant at T10 right (P < 0.05) and L3 left (P < 0.01), the difference was not significant at T10 left and L3 right (P > 0.05). The median frequency intercept at T10 right, T10 left, L3 right, L3 left erector spinae muscles decreased by 2.0% (P > 0.05) 10.9% and 29.9% (P < 0.05), 27.9% (P < 0.01), respectively. The mean power frequency intercept decreased by 9% at L3 left erector spinae muscle (P < 0.05), the decrease was not statistically significant at other sites (P > 0.05).

Conclusion: Repetitive lifting may induce measurable fatigue in the erector spinae muscles. Erector spinae muscle at L3 is more easily fatigued than at T10. Using the median frequency intercept to assess muscle fatigue is more sensitive than using mean power frequency intercept.

PubMed Disclaimer

Similar articles

Publication types