Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Mar 15;174(6):3143-7.
doi: 10.4049/jimmunol.174.6.3143.

The prevalence of regulatory T cells in lymphoid tissue is correlated with viral load in HIV-infected patients

Affiliations
Free article

The prevalence of regulatory T cells in lymphoid tissue is correlated with viral load in HIV-infected patients

Jan Andersson et al. J Immunol. .
Free article

Abstract

Inadequate local cell-mediated immunity appears crucial for the establishment of chronic HIV infection. Accumulation of regulatory T cells (Treg) at the site of HIV replication, the lymphoid organs, may influence the outcome of HIV infection. Our data provide the first evidence that chronic HIV infection changes Treg tissue distribution. Several molecules characteristics of Treg (FoxP3, CTLA-4, glucocorticoid-induced TNFR family-related receptor, and CD25) were expressed more in tonsils of untreated patients compared with antiretroviral-treated patients. Importantly, most FoxP3+ cells expressed CTLA-4, but not CD69. Furthermore, a direct correlation between FoxP3 levels and viral load was evident. In contrast, FoxP3 expression was decreased in circulating T cells from untreated patients, but normalized after initiation of treatment. Functional markers of Treg activity (indoleamine 2,3-dioxygenase, TGF-beta, and CD80) were markedly increased in the tonsils of untreated patients. Our data could provide a new basis for immune-based therapies that counteract in vivo Treg and thereby reinforce appropriate antiviral immunity.

PubMed Disclaimer

Publication types

MeSH terms