Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Apr;235(1):155-61.
doi: 10.1148/radiol.2351040094. Epub 2005 Mar 4.

Cell tagging with clinically approved iron oxides: feasibility and effect of lipofection, particle size, and surface coating on labeling efficiency

Affiliations

Cell tagging with clinically approved iron oxides: feasibility and effect of lipofection, particle size, and surface coating on labeling efficiency

Lars Matuszewski et al. Radiology. 2005 Apr.

Abstract

Purpose: To evaluate the effect of lipofection, particle size, and surface coating on labeling efficiency of mammalian cells with superparamagnetic iron oxides (SPIOs).

Materials and methods: Institutional Review Board approval was not required. Different human cell lines (lung and breast cancer, fibrosarcoma, leukocytes) were tagged by using carboxydextran-coated SPIOs of various hydrodynamic diameters (17-65 nm) and a dextran-coated iron oxide (150 nm). Cells were incubated with increasing concentrations of iron (0.01-1.00 mg of iron [Fe] per milliliter), including or excluding a transfection medium (TM). Cellular iron uptake was analyzed qualitatively at light and electron microscopy and was quantified at atomic emission spectroscopy. Cell visibility was assessed with gradient- and spin-echo magnetic resonance (MR) imaging. Effects of iron concentration in the medium and of lipofection on cellular SPIO uptake were analyzed with analysis of variance and two-tailed Student t test, respectively.

Results: Iron oxide uptake increased in a dose-dependent manner with higher iron concentrations in the medium. The TM significantly increased the iron load of cells (up to 2.6-fold, P < .05). For carboxydextran-coated SPIOs, larger particle size resulted in improved cellular uptake (65 nm, 4.37 microg +/- 0.08 Fe per 100 000 cells; 17 nm, 2.14 microg +/- 0.06 Fe per 100 000 cells; P < .05). Despite larger particle size, dextran-coated iron oxides did not differ from large carboxydextran-coated particles (150 nm, 3.81 microg +/- 0.46 Fe per 100 000 cells; 65 nm, 4.37 microg +/- 0.08 Fe per 100 000 cells; P > .05). As few as 10 000 cells could be detected with clinically available MR techniques by using this approach.

Conclusion: Lipofection-based cell tagging is a simple method for efficient cell labeling with clinically approved iron oxide-based contrast agents. Large particle size and carboxydextran coating are preferable for cell tagging with endocytosis- and lipofection-based methods.

PubMed Disclaimer

LinkOut - more resources