Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2005 Mar;43(3):1059-63.
doi: 10.1128/JCM.43.3.1059-1063.2005.

Comparison of specimen processing and nucleic acid extraction by the swab extraction tube system versus the MagNA Pure LC system for laboratory diagnosis of herpes simplex virus infections by LightCycler PCR

Affiliations
Comparative Study

Comparison of specimen processing and nucleic acid extraction by the swab extraction tube system versus the MagNA Pure LC system for laboratory diagnosis of herpes simplex virus infections by LightCycler PCR

N C Issa et al. J Clin Microbiol. 2005 Mar.

Abstract

A total of 563 specimens (234 dermal and 329 genital swabs) from patients suspected of having herpes simplex virus (HSV) infections were processed using two different extraction methods (the MagNA Pure LC system and the swab extraction tube system [SETS]); HSV DNA was amplified by LightCycler PCR. HSV DNA was detected in 157 of 563 specimens (27.9%) processed by the MagNA Pure LC system and in 179 of 563 specimens (31.8%) processed by SETS (P < 0.0001). There was no specimen processed by the MagNA Pure LC extraction method that was positive only for HSV DNA. Of 157 specimens positive by both methods, HSV DNA copy levels were higher (using cycle crossover points [cycle threshold {C(T)}]) with SETS (mean C(T), 25.9 cycles) than with the MagNA Pure LC system (mean C(T), 32.0 cycles) (P < 0.0001). The time to process 32 samples was longer with the MagNA Pure LC extraction system (90 min) than with SETS (35 min). HSV DNA extraction using SETS is faster, less expensive, and more sensitive than the MagNA Pure LC system and could replace the latter for the laboratory diagnosis of HSV infections using LightCycler PCR.

PubMed Disclaimer

Figures

FIG. 1.
FIG. 1.
Specimen collection and processing. Noted centrifuge speed is as on an Eppendorf 5417 (Brinkman Instruments).
FIG. 2.
FIG. 2.
Comparison of the detection of HSV DNA extracted by SETS and MagNA Pure LC system.

Similar articles

Cited by

References

    1. Aldea, C., C. P. Alvarez, L. Folgueira, R. Delgado, and J. R. Otero. 2002. Rapid detection of herpes simplex virus DNA in genital ulcers by real-time PCR using SYBR green I dye as the detection signal. J. Clin. Microbiol. 40:1060-1062. - PMC - PubMed
    1. Burrows, J., A. Nitsche, B. Bayly, E. Walker, G. Higgins, and T. Kok. 2002. Detection and subtyping of herpes simplex virus in clinical samples by LightCycler PCR, enzyme immunoassay and cell culture. BMC Microbiol. 2:12. - PMC - PubMed
    1. Espy, M. J., T. K. Ross, R. Teo, K. A. Svien, A. D. Wold, J. R. Uhl, and T. F. Smith. 2000. Evaluation of LightCycler PCR for implementation of laboratory diagnosis of herpes simplex virus infections. J. Clin. Microbiol. 38:3116-3118. - PMC - PubMed
    1. Espy, M. J., P. N. Rys, A. D. Wold, J. R. Uhl, L. M. Sloan, G. D. Jenkins, D. M. Ilstrup, F. R. Cockerill III, R. Patel, J. E. Rosenblatt, and T. F. Smith. 2001. Detection of herpes simplex virus DNA in genital and dermal specimens by LightCycler PCR after extraction using the IsoQuick, MagNA Pure, and BioRobot 9604 methods. J. Clin. Microbiol. 39:2233-2236. - PMC - PubMed
    1. Espy, M. J., J. R. Uhl, P. S. Mitchell, J. N. Thorvilson, K. A. Svien, A. D. Wold, and T. F. Smith. 2000. Diagnosis of herpes simplex virus infections in the clinical laboratory by LightCycler PCR. J. Clin. Microbiol. 38:795-799. - PMC - PubMed

Publication types

MeSH terms