Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2005 Apr;8(4):426-34.
doi: 10.1038/nn1417. Epub 2005 Mar 6.

Control of synaptic strength and timing by the release-site Ca2+ signal

Affiliations
Comparative Study

Control of synaptic strength and timing by the release-site Ca2+ signal

Johann H Bollmann et al. Nat Neurosci. 2005 Apr.

Erratum in

  • Nat Neurosci. 2005 Jul;8(7):969

Abstract

Transmitter release is triggered by highly localized, transient increases in the presynaptic Ca(2+) concentration ([Ca(2+)]). Rapidly decaying [Ca(2+)] elevations were generated using Ca(2+) uncaging techniques, and [Ca(2+)] was measured with a low-affinity Ca(2+) indicator in a giant presynaptic terminal, the calyx of Held, in rat brain slices. The rise time and amplitude of evoked excitatory postsynaptic currents (EPSCs) depended on the half-width of the fluorescence transient, which was predicted by a five-binding site model of a Ca(2+) sensor having relatively high affinity (K(d) approximately 13 microM). Very fast [Ca(2+)] transients (half-width <0.5 ms) evoked EPSCs similar to those elicited by a single action potential (AP) in the same synapse. Triggering release with dual [Ca(2+)] transients of variable amplitudes demonstrated the supralinear transfer function of the sensor. The sensitivity of release to the time course of the [Ca(2+)] transient may contribute to mechanisms by which the presynaptic AP waveform controls synaptic strength.

PubMed Disclaimer

Comment in

Publication types

MeSH terms

LinkOut - more resources