Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Mar 7;6(1):11.
doi: 10.1186/1471-2121-6-11.

Inclusion of Scar/WAVE3 in a similar complex to Scar/WAVE1 and 2

Affiliations

Inclusion of Scar/WAVE3 in a similar complex to Scar/WAVE1 and 2

Craig F Stovold et al. BMC Cell Biol. .

Abstract

Background: The Scar/WAVE family of proteins mediates signals to actin assembly by direct activation of the Arp2/3 complex. These proteins have been characterised as major regulators of lamellipodia formation downstream of Rac activation and as members of large protein complexes.

Results: We have investigated the interactions of the three human Scar/WAVE isoforms with several previously described binding partners for Scar/WAVE 1 or 2. We find that all three Scar/WAVE isoforms behave similarly and are likely to participate in the same kinds of protein complexes that regulate actin assembly.

Conclusion: Differences between Scar/WAVE proteins are therefore likely to be at the level of tissue distribution or subtle differences in the affinity for specific binding partners.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Co-immunoprecipitation of Scar3 and Abi1 from mouse brain extract. Protein G beads were used to precipitate Abi1 from mouse brain extracts in the presence or absence of (A) anti-Abi1 or an unrelated control antibody or (B) anti-Scar3 or an unrelated control antibody. (A) The beads fractions were probed with anti-Abi1, anti-Scar/WAVE1 and anti-Scar/WAVE3. Anti-Abi1 immunoblotting confirmed precipitation of Abi1 only with specific antibody and immunoblotting with anti-Scar/WAVE1 shows association with a known binding partner. Immunoblotting with anti-Scar/WAVE3 revealed Scar/WAVE3 to also be present in Abi1 immunoprecipitates. Anti-Abi1 pulls down both Scar1 and Scar3 together with Abi1. (B) Beads fractions from anti-Scar/WAVE3 immunoprecipitates were probed with both anti-Scar/WAVE3 and anti-Abi1. Both Scar3 and Abi1 are detected in anti-Scar/WAVE3 immunoprecipitates, but not with controls.
Figure 2
Figure 2
Co-immunoprecipitation of Abi1 and HSPC300 with Scar Homology Domain. Cos 7 fibroblasts transiently transfected as indicated. Protein G beads were used to immunoprecipitate Myc-Scar1 SHD, Myc-Scar2 SHD or Myc-Scar3 SHD from lysates in the presence (+) or absence (-) of anti-Myc (9E10) monoclonal antibody. Empty pRK5-Myc vector was used as an additional negative control. (A) HA-Abi1 was detected in the beads plus antibody fractions for Myc-Scar1 SHD, Myc-Scar2 SHD, and Myc-Scar3 SHD, but not in the negative controls. (B) HA-HSPC300 was detected in the beads plus antibody fraction of immunoprecipitations from cells co-transfected only with Myc-Scar1 SHD, Myc-Scar2 SHD, and Myc-Scar3 SHD, but not empty vector controls or in the absence of 9E10 antibody.
Figure 3
Figure 3
Recombinant SHD pulls down Abi1 and HSPC300. Lysate of Cos7 fibroblasts transfected with HA-Abi1 or HSPC300 was incubated as indicated with GST alone, GST-Scar1 SHD (A), GST-Scar2 SHD (A), or GST-Scar3 SHD (B) on glutathione-s-agarose beads. Beads bound fractions were analysed by SDS-PAGE and immunoblotting with a monoclonal anti-Myc (9E10) antibody. HA-Abi1 and HA-HSPC300 were found in pull-downs with all three Scar Homology Domains, but not with GST alone.
Figure 4
Figure 4
IRSp53 interacts with Scar/WAVE1, 2 and 3. Equivalent amounts of GST-IRSp53 or constitutively active GST-L61 Rac were used for pull-down assays from lysates of Cos cells transfected with Myc-Scar1, 2 or 3. Bead fractions and whole cell lysates, indicating loading with each Scar/WAVE isoform, were analysed by SDS-PAGE and immunoblotting with monoclonal (9E10) anti-Myc antibody. None of the Scar/WAVE isoforms bound to active Cdc42, but all were detected in GST-IRSp53 bead fractions.
Figure 5
Figure 5
Cellular localisation of Scar3. C2C12 cells were stained with anti-Scar/WAVE3, anti-Arp3, anti-Abi1 and fluorescently labelled phalloidin to investigate the cellular localisation of endogenous proteins. (A) C2C12 cells stained with (i) anti-Scar/WAVE3 (green), (ii) phalloidin (red) (iii) reveal co-localisation of Scar/WAVE3 with cortical polymerised actin in membrane ruffles. Scar/WAVE3 also colocalises with other areas enriched in polymerised actin, but not stress fibres. (B) Co-staining with (i) anti-Scar/WAVE3 and (ii) anti-Arp3 reveals co-localisation of Scar/WAVE3 (green) with the Arp2/3 complex (red) at protruding areas of the cell membrane. (C) Cells stained with (i) anti-Scar/WAVE3 and (ii) anti-Abi1. (iii) Scar/WAVE3 (green) co-localises with Abi1 (red) in some areas of membrane protrusion. A (i), B (i), and C (i) all show a cytoplasmic and perinuclear and cytoplasmic pool of Scar/WAVE3, with enrichment at areas of lamellipodial protrusion. B (ii) and C (ii) show similar patterns of staining for Arp3 and Abi1. Scale bars are equal to 20 μm in all pictures.
Figure 6
Figure 6
Cellular localization of Abi1, HSPC300, and the Scar homology domain. Transfected Cos cells were stained with a monoclonal anti-Myc antibody and polyclonal anti-HA antibodies to detect over-expressed proteins. (A) Cos7 cells were co-transfected with (i) HA-HSPC300, (ii) HA-Abi1, (iii) Myc-Scar1 SHD, (iv) Myc-Scar2 SHD, or (v) Myc-Scar3 SHD to examine localization of these proteins. HSPC300, and all three SHDs localise in a diffuse cytoplasmic pool with some enrichment at protrusive edges of cells. Abi1 is not detected at the edges of cells, but appears in vesicle-like spots throughout the cytoplasm. (B) Cos7 cells were co-transfected with Myc-Scar1 SHD (i) and HA-HSPC300 (ii) shown as red and green respectively in a merged image (iii). Scar1-SHD and HSPC300 exhibit the same diffuse staining throughout the cytoplasm but also co-localize at protruding edges of cells. (C) Cos7 cells were co-transfected with Myc-Scar1 SHD (i) and HA-Abi1 (ii). (iii) Shows a merge image with myc-Scar1 SHD in red and HA-Abi1 in green. Scar1 SHD and Abi1 both colocalize to punctate spots similar to those seen for Abi1 alone. (D) Cos7 cells co-transfected with Myc-Scar2 SHD (i) and HA-HSPC300 (ii) shown as red and green respectively in a merge image (iii). Both Scar2 SHD and HSPC300 exhibit peri-nuclear staining and localization to protrusive edges of cells. (E) Cos7 cells co-transfected with Myc-Scar2 SHD (i) and HA-Abi1 (ii). (iii) Scar2 SHD (red) and Abi1 (green) show co-localization to cytoplasmic spots and the edges of cells. (F) Cos7 cells co-transfected with (i) Myc-Scar3 SHD (red) and (ii) HA-HSPC300 (green), in a merged image (iii). HSPC300 and Scar3 SHD show diffuse cytoplasmic staining with enrichment at protrusive edges of cells. (G) Cos7 cells co-transfected with (i) Myc-Scar3 SHD and (ii) HA-Abi1. (iii) In a merge image Abi1 (green) and Scar3 SHD (red) co-localize to punctate cytoplasmic spots and to the edges of lamellipodia. Scale bars in all panels are 20 μm.

References

    1. May RC, Machesky LM. Phagocytosis and the actin cytoskeleton. J Cell Sci. 2001;114:1061–1077. - PubMed
    1. May RC, Caron E, Hall A, Machesky LM. Involvement of the Arp2/3 complex in phagocytosis mediated by FcgammaR or CR3. Nat Cell Biol. 2000;2:246–248. doi: 10.1038/35008673. - DOI - PubMed
    1. DeMali KA, Barlow CA, Burridge K. Recruitment of the Arp2/3 complex to vinculin: coupling membrane protrusion to matrix adhesion. J Cell Biol. 2002;159:881–891. doi: 10.1083/jcb.200206043. - DOI - PMC - PubMed
    1. Blanchoin L, Amann KJ, Higgs HN, Marchand JB, Kaiser DA, Pollard TD. Direct observation of dendritic actin filament networks nucleated by Arp2/3 complex and WASP/Scar proteins. Nature. 2000;404:1007–1011. doi: 10.1038/35010008. - DOI - PubMed
    1. Mullins RD, Heuser JA, Pollard TD. The interaction of Arp2/3 complex with actin: nucleation, high affinity pointed end capping, and formation of branching networks of filaments. Proc Natl Acad Sci U S A. 1998;95:6181–6186. doi: 10.1073/pnas.95.11.6181. - DOI - PMC - PubMed

Publication types

LinkOut - more resources