Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Feb;11(2):225-31.
doi: 10.3201/eid1102.041028.

Novel flavivirus or new lineage of West Nile virus, central Europe

Affiliations

Novel flavivirus or new lineage of West Nile virus, central Europe

Tamás Bakonyi et al. Emerg Infect Dis. 2005 Feb.

Abstract

A flavivirus (strain 97-103) was isolated from Culex pipens mosquitoes in 1997 following floods in South Moravia, Czech Republic. The strain exhibited close antigenic relationship to West Nile virus (WNV) prototype strain Eg-101 in a cross-neutralization test. In this study, mouse pathogenicity characteristics and the complete nucleotide and putative amino acid sequences of isolate 97-103, named Rabensburg virus (RabV) after a nearby Austrian city, were determined. RabV shares only 75%-77% nucleotide identity and 89%-90% amino acid identity with representative strains of WNV lineages 1 and 2. Another RabV strain (99-222) was isolated in the same location 2 years later; it showed >99% nucleotide identity to strain 97-103. Phylogenetic analyses of RabV, WNV strains, and other members of the Japanese encephalitis virus (JEV) complex clearly demonstrated that RabV is either a new (third) lineage of WNV or a novel flavivirus of the JEV group.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Phylogenetic tree illustrating the genetic relationship between selected West Nile virus strains based on their complete genome sequences. Bar on the left demonstrates the genetic distance. (Abbreviations and accession numbers are listed in Table 2.)
Figure 2
Figure 2
Phylogenetic tree illustrating the genetic relationship between representatives of the Japanese encephalitis virus complex and selected West Nile virus strains based on partial genome sequences of the NS5 protein gene. Bar on the left demonstrates the genetic distance. (Abbreviations and accession numbers are listed in Table 2.)

Similar articles

Cited by

References

    1. Heinz FX, Collett MS, Purcell RH, Gould EA, Howard CR, Houghton M, et al. Family Flaviviridae. In: van Regenmortel MHV, Faquet CM, Bishop DHL, editors. Virus taxonomy, Seventh International Committee for the Taxonomy of Viruses. San Diego: Academic Press; 2000. p. 859–78.
    1. Hayes CG. West Nile fever. In: Monath TP, editor. The arboviruses: epidemiology and ecology. Vol. V. Boca Raton (FL): CRC Press; 1989. p. 59–88.
    1. Hubálek Z, Halouzka J. West Nile fever—a reemerging mosquito-borne viral disease in Europe. Emerg Infect Dis. 1999;5:643–50. 10.3201/eid0505.990506 - DOI - PMC - PubMed
    1. Hubálek Z. European experience with the West Nile virus ecology and epidemiology: could it be relevant for the New World? Viral Immunol. 2000;13:415–26. 10.1089/vim.2000.13.415 - DOI - PubMed
    1. Murgue B, Zeller H, Deubel V. The ecology and epidemiology of West Nile virus in Africa, Europe. In: Mackenzie JS, Barrett ADT, Deubel V, editors. Japanese encephalitis and West Nile viruses. Current topics in Microbiology. Vol. 267: West Nile. Berlin: Springer; 2002. p. 195–221. - PubMed

Publication types

MeSH terms

LinkOut - more resources