The substrate specificity of SARS coronavirus 3C-like proteinase
- PMID: 15752746
- PMCID: PMC7092912
- DOI: 10.1016/j.bbrc.2005.02.061
The substrate specificity of SARS coronavirus 3C-like proteinase
Abstract
The 3C-like proteinase of severe acute respiratory syndrome coronavirus (SARS) has been proposed to be a key target for structural based drug design against SARS. We have designed and synthesized 34 peptide substrates and determined their hydrolysis activities. The conserved core sequence of the native cleavage site is optimized for high hydrolysis activity. Residues at position P4, P3, and P3' are critical for substrate recognition and binding, and increment of beta-sheet conformation tendency is also helpful. A comparative molecular field analysis (CoMFA) model was constructed. Based on the mutation data and CoMFA model, a multiply mutated octapeptide S24 was designed for higher activity. The experimentally determined hydrolysis activity of S24 is the highest in all designed substrates and is close to that predicted by CoMFA. These results offer helpful information for the research on the mechanism of substrate recognition of coronavirus 3C-like proteinase.
Figures

Similar articles
-
The N-terminal octapeptide acts as a dimerization inhibitor of SARS coronavirus 3C-like proteinase.Biochem Biophys Res Commun. 2006 Jan 20;339(3):865-72. doi: 10.1016/j.bbrc.2005.11.102. Epub 2005 Nov 28. Biochem Biophys Res Commun. 2006. PMID: 16329994 Free PMC article.
-
Biosynthesis, purification, and substrate specificity of severe acute respiratory syndrome coronavirus 3C-like proteinase.J Biol Chem. 2004 Jan 16;279(3):1637-42. doi: 10.1074/jbc.M310875200. Epub 2003 Oct 15. J Biol Chem. 2004. PMID: 14561748 Free PMC article.
-
Virtual screening of novel noncovalent inhibitors for SARS-CoV 3C-like proteinase.J Chem Inf Model. 2005 Jan-Feb;45(1):10-17. doi: 10.1021/ci049809b. J Chem Inf Model. 2005. PMID: 15667124
-
3C-like proteinase from SARS coronavirus catalyzes substrate hydrolysis by a general base mechanism.Biochemistry. 2004 Apr 20;43(15):4568-74. doi: 10.1021/bi036022q. Biochemistry. 2004. PMID: 15078103
-
A novel auto-cleavage assay for studying mutational effects on the active site of severe acute respiratory syndrome coronavirus 3C-like protease.Biochem Biophys Res Commun. 2004 Nov 12;324(2):579-83. doi: 10.1016/j.bbrc.2004.09.088. Biochem Biophys Res Commun. 2004. PMID: 15474466 Free PMC article.
Cited by
-
The SARS-CoV-2 main protease as drug target.Bioorg Med Chem Lett. 2020 Sep 1;30(17):127377. doi: 10.1016/j.bmcl.2020.127377. Epub 2020 Jul 2. Bioorg Med Chem Lett. 2020. PMID: 32738988 Free PMC article. Review.
-
Novel dithiocarbamates selectively inhibit 3CL protease of SARS-CoV-2 and other coronaviruses.Eur J Med Chem. 2023 Mar 15;250:115186. doi: 10.1016/j.ejmech.2023.115186. Epub 2023 Feb 6. Eur J Med Chem. 2023. PMID: 36796300 Free PMC article.
-
Label-free duplex SAMDI-MS screen reveals novel SARS-CoV-2 3CLpro inhibitors.Antiviral Res. 2022 Apr;200:105279. doi: 10.1016/j.antiviral.2022.105279. Epub 2022 Mar 9. Antiviral Res. 2022. PMID: 35278580 Free PMC article.
-
Mutational and inhibitive analysis of SARS coronavirus 3C-like protease by fluorescence resonance energy transfer-based assays.Biochem Biophys Res Commun. 2005 Jun 17;331(4):1554-9. doi: 10.1016/j.bbrc.2005.04.072. Biochem Biophys Res Commun. 2005. PMID: 15883050 Free PMC article.
-
Profiling of substrate specificity of SARS-CoV 3CL.PLoS One. 2010 Oct 6;5(10):e13197. doi: 10.1371/journal.pone.0013197. PLoS One. 2010. PMID: 20949131 Free PMC article.
References
-
- Drosten C., Gunther S., Preiser W., van der Werf S., Brodt H.R., Becker S., Rabenau H., Panning M., Kolesnikova L., Fouchier R.A., Berger A., Burguiere A.M., Cinatl J., Eickmann M., Escriou N., Grywna K., Kramme S., Manuguerra J.C., Muller S., Rickerts V., Sturmer M., Vieth S., Klenk H.D., Osterhaus A.D., Schmitz H., Doerr H.W. Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N. Engl. J. Med. 2003;348:1967–1976. - PubMed
-
- Ksiazek T.G., Erdman D., Goldsmith C.S., Zaki S.R., Peret T., Emery S., Tong S., Urbani C., Comer J.A., Lim W., Uu P.E., Rollin, Dowell S.F., Ling A.E., Humphrey C.D., Shieh W.J., Guarner J., Paddock C.D., Rota P., Fields B., DeRisi J., Yang J.Y., Cox N., Hughes J.M., LeDuc J.W., Bellini W.J., Anderson L.J. A novel coronavirus associated with severe acute respiratory syndrome. N. Engl. J. Med. 2003;348:1953–1966. - PubMed
-
- Anand K., Ziebuhr J., Wadhwani P., Mesters J.R., Hilgenfeld R. Coronavirus main proteinase (3CLPro) structure: basis for design of anti-SARS drugs. Science. 2003;300:1763–1767. - PubMed
-
- Yang H.T., Yang M.J., Ding Y., Liu Y.W., Lou Z.Y., Zhou Z., Sun L., Mo L.J., Ye S., Pang H., Gao G.F., Anand K., Bartlam M., Hilgenfeld R., Rao Z.H. The crystal structure of severe acute respiratory syndrome virus main proteinase and its complex with an inhibitor. Proc. Natl. Acad. Sci. USA. 2003;100:13190–13195. - PMC - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous