Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2005 May 6;280(18):17608-16.
doi: 10.1074/jbc.M501770200. Epub 2005 Mar 7.

Epithelial sodium channel inhibition by AMP-activated protein kinase in oocytes and polarized renal epithelial cells

Affiliations
Free article
Comparative Study

Epithelial sodium channel inhibition by AMP-activated protein kinase in oocytes and polarized renal epithelial cells

Marcelo D Carattino et al. J Biol Chem. .
Free article

Abstract

The epithelial Na(+) channel (ENaC) regulates epithelial salt and water reabsorption, processes that require significant expenditure of cellular energy. To test whether the ubiquitous metabolic sensor AMP-activated kinase (AMPK) regulates ENaC, we examined the effects of AMPK activation on amiloride-sensitive currents in Xenopus oocytes and polarized mouse collecting duct mpkCCD(c14) cells. Microinjection of oocytes expressing mouse ENaC (mENaC) with either active AMPK protein or an AMPK activator inhibited mENaC currents relative to controls as measured by two-electrode voltage-clamp studies. Similarly, pharmacological AMPK activation or overexpression of an activating AMPK mutant in mpkCCD(c14) cells inhibited amiloride-sensitive short circuit currents. Expression of a degenerin mutant beta-mENaC subunit (S518K) along with wild type alpha and gamma increased the channel open probability (P(o)) to approximately 1. However, AMPK activation inhibited currents similarly with expression of either degenerin mutant or wild type mENaC. Single channel recordings under these conditions demonstrated that neither P(o) nor channel conductance was affected by AMPK activation. Moreover, expression of a Liddle's syndrome-type beta-mENaC mutant (Y618A) greatly enhanced ENaC whole cell currents relative to wild type ENaC controls and prevented AMPK-dependent inhibition. These findings indicate that AMPK-dependent ENaC inhibition is mediated through a decrease in the number of active channels at the plasma membrane (N), presumably through enhanced Nedd4-2-dependent ENaC endocytosis. The AMPK-ENaC interaction appears to be indirect; AMPK did not bind ENaC in cells, as assessed by in vivo pull-down assays, nor did it phosphorylate ENaC in vitro. In summary, these results suggest a novel mechanism for coupling ENaC activity and renal Na(+) handling to cellular metabolic status through AMPK, which may help prevent cellular Na(+) loading under hypoxic or ischemic conditions.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources