Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005;109(1-3):373-7.
doi: 10.1159/000082422.

Limitations of in situ hybridization with total genomic DNA in routine screening for alien introgressions in wheat

Affiliations

Limitations of in situ hybridization with total genomic DNA in routine screening for alien introgressions in wheat

A J Lukaszewski et al. Cytogenet Genome Res. 2005.

Abstract

In situ hybridization with total genomic DNA (GISH) has become a powerful tool in characterization of alien introgressions in wheat. With recent simplification it can now be used in large scale screening for new chromosome constructs. Its level of resolution in routine applications was tested on sets of recombined wheat-rye chromosomes with genetically determined positions of the translocation breakpoints. The resolution level of GISH visualized by an enzymatic color reaction was much lower than that of GISH with fluorescent probes but both techniques failed to reveal the presence of some distally located breakpoints. The limits of resolution for the two methods were at least 9.8 and 3.5 cM of the relative genetic lengths of chromosome arms, respectively, in configurations with proximal rye and terminal wheat segments when rye DNA was used as a probe. When wheat DNA was used as a probe, a terminal wheat segment estimated to be ca. 1.6 cM in length could not be visualized. An example of induced recombination between a chromosome of Agropyron elongatum and wheat illustrates that these resolution limits of GISH may hamper isolation of critical translocation breakpoints in a chromosome engineering effort.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources