An integrated approach utilizing proteomics and bioinformatics to detect ovarian cancer
- PMID: 15754417
- PMCID: PMC1389728
- DOI: 10.1631/jzus.2005.B0227
An integrated approach utilizing proteomics and bioinformatics to detect ovarian cancer
Abstract
Objective: To find new potential biomarkers and establish the patterns for the detection of ovarian cancer.
Methods: Sixty one serum samples including 32 ovarian cancer patients and 29 healthy people were detected by surface-enhanced laser desorption/ionization mass spectrometry (SELDI-MS). The protein fingerprint data were analyzed by bioinformatics tools. Ten folds cross-validation support vector machine (SVM) was used to establish the diagnostic pattern.
Results: Five potential biomarkers were found (2085 Da, 5881 Da, 7564 Da, 9422 Da, 6044 Da), combined with which the diagnostic pattern separated the ovarian cancer from the healthy samples with a sensitivity of 96.7%, a specificity of 96.7% and a positive predictive value of 96.7%.
Conclusions: The combination of SELDI with bioinformatics tools could find new biomarkers and establish patterns with high sensitivity and specificity for the detection of ovarian cancer.
Figures






Similar articles
-
[Application of serum protein fingerprint model and support vector machine in diagnosis of thyroid cancer].Zhonghua Yi Xue Za Zhi. 2006 Apr 11;86(14):979-82. Zhonghua Yi Xue Za Zhi. 2006. PMID: 16759540 Chinese.
-
Detection of hypopharyngeal squamous cell carcinoma using serum proteomics.Acta Otolaryngol. 2006 Aug;126(8):853-60. doi: 10.1080/00016480500525205. Acta Otolaryngol. 2006. PMID: 16846929
-
Proteomic studies of early-stage and advanced ovarian cancer patients.Gynecol Oncol. 2008 Oct;111(1):111-9. doi: 10.1016/j.ygyno.2008.06.031. Epub 2008 Aug 15. Gynecol Oncol. 2008. PMID: 18703221
-
[Identification of new ovarian cancer biomarkers with proteomic analyses--the diagnostic tool of the future?].Ugeskr Laeger. 2007 Aug 13;169(33):2614-9. Ugeskr Laeger. 2007. PMID: 17725906 Review. Danish.
-
[Molecular diagnostics of ovarian cancer using proteome techniques].Biomed Khim. 2005 Jul-Aug;51(4):367-83. Biomed Khim. 2005. PMID: 16223028 Review. Russian.
Cited by
-
Proteiomic patterns for endometrial cancer using SELDI-TOF-MS.J Zhejiang Univ Sci B. 2008 Apr;9(4):286-90. doi: 10.1631/jzus.B0710589. J Zhejiang Univ Sci B. 2008. PMID: 18381802 Free PMC article.
-
Mining novel biomarkers for prognosis of gastric cancer with serum proteomics.J Exp Clin Cancer Res. 2009 Sep 9;28(1):126. doi: 10.1186/1756-9966-28-126. J Exp Clin Cancer Res. 2009. PMID: 19740432 Free PMC article.
-
Feed forward artificial neural network: tool for early detection of ovarian cancer.Sci Pharm. 2011 Jul-Sep;79(3):493-505. doi: 10.3797/scipharm.1105-11. Epub 2011 Jul 5. Sci Pharm. 2011. PMID: 21886899 Free PMC article.
-
After Detection: The Improved Accuracy of Lung Cancer Assessment Using Radiologic Computer-aided Diagnosis.Acad Radiol. 2016 Feb;23(2):186-91. doi: 10.1016/j.acra.2015.10.014. Epub 2015 Nov 23. Acad Radiol. 2016. PMID: 26616209 Free PMC article.
-
Detection of renal allograft dysfunction with characteristic protein fingerprint by serum proteomic analysis.Int Urol Nephrol. 2011 Dec;43(4):1009-17. doi: 10.1007/s11255-011-9962-5. Epub 2011 Apr 24. Int Urol Nephrol. 2011. PMID: 21516471
References
-
- Adam B, Qu Y, Davis JW, Ward MD, Clements MA, Cazares LH, Semmens OJ, Schellhammer PF, Yasui Y, Ziding F, et al. Serum protein fingerprinting coupled with a pattern-matching algorithm distinguishes prostate cancer from benign prostate hyperplasia and healthy men. Cancer Res. 2002;62(13):3609–3614. - PubMed
-
- Bast RCJr, Xu FJ, Yu YH, Barnhill S, Zhang Z, Mills GB. CA125: the past and the future. Int J Biol Markers. 1998;13(4):179–187. - PubMed
-
- Chen YD, Zheng S, Yu JK, Hu X. Application of serum protein pattern model in diagnosis of colorectal cancer. Zhonghua Zhong Liu Za Zhi. 2004;26(7):417–420. (in Chinese) - PubMed
-
- Hu Y, Zhang SZ, Yu JK, Liu J, Zheng S. Detection and evaluation of serum proteomic patterns by SELDI-TOF-MS in breast cancer. Zhong Hua Jian Yan Zha Zhi. 2004;27(10):646–648. (in Chinese)
-
- Li J, Zhang Z, Rosenzweig J, Wang YY, Chan DW. Proteomics and bioinformatics approached for identification of serum biomarkers to detect breast cancer. Clin Chem. 2002;48(8):1296–1304. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical