Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1992 May 15;295(1):29-34.
doi: 10.1016/0003-9861(92)90483-d.

Effect of riboflavin-binding protein deficiency on riboflavin metabolism in the laying hen

Affiliations
Comparative Study

Effect of riboflavin-binding protein deficiency on riboflavin metabolism in the laying hen

H B White 3rd et al. Arch Biochem Biophys. .

Abstract

Normal chicken eggs contain substantial amounts of riboflavin, all of which is bound to a specific, high-affinity, riboflavin-binding protein (RfBP). Two hens, genetically unable to produce RfBP and thus unable to deposit sufficient riboflavin in their eggs, were compared to two normal hens with respect to the biological half-life of [14C]riboflavin, the tissue distribution of 14C-labeled flavins, and the relative contributions of tissue and dietary riboflavin to flavins deposited in the egg. The biological half-life of [14C]riboflavin was slightly but insignificantly less in the RfBP-deficient hens (11.5 +/- 1.7 days vs 15.1 +/- 3.3 days). The 14C-labeled flavin content of a variety of tissues 3 weeks after the intraperitoneal injection of 5 microCi of riboflavin was also very similar among the four hens. In contrast, the 14C-labeled flavin content of egg yolk, egg albumen, and blood plasma from RfBP-deficient birds was less than 10% of normal. For all hens, the specific radioactivity of flavins in yolk and albumen was similar to that in liver but less than that in heart. We conclude that riboflavin deposited in egg had equilibrated with the large hepatic flavin pool and was not derived preferentially from unlabeled dietary riboflavin. Other than the inability to deposit riboflavin in their eggs, hens of the mutant strain have normal riboflavin metabolism.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources