Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Mar;11(3):373-9.
doi: 10.3201/eid1103.040629.

Rapid identification of emerging pathogens: coronavirus

Affiliations

Rapid identification of emerging pathogens: coronavirus

Rangarajan Sampath et al. Emerg Infect Dis. 2005 Mar.

Abstract

We describe a new approach for infectious disease surveillance that facilitates rapid identification of known and emerging pathogens. The process uses broad-range polymerase chain reaction (PCR) to amplify nucleic acid targets from large groupings of organisms, electrospray ionization mass spectrometry for accurate mass measurements of PCR products, and base composition signature analysis to identify organisms in a sample. We demonstrate this principle by using 14 isolates of 9 diverse Coronavirus spp., including the severe acute respiratory syndrome-associated coronavirus (SARS-CoV). We show that this method could identify and distinguish between SARS and other known CoV, including the human CoV 229E and OC43, individually and in a mixture of all 3 human viruses. The sensitivity of detection, measured by using titered SARS-CoV spiked into human serum, was approximate, equals1 PFU/mL. This approach, applicable to the surveillance of bacterial, viral, fungal, or protozoal pathogens, is capable of automated analysis of >900 PCR reactions per day.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Electrospray ionization Fourier transfer ion cyclotron resonance (ESI-FTICR) mass spectrum from the polymerase chain reaction (PCR) amplicons from the severe acute respiratory syndrome (SARS)-associated coronavirus obtained with the propynylated RNA-dependent RNA polymerase primer pairs. The electrospray ionization conditions separate the sense and antisense strands of the PCR products. Multiple charge states are observed across the m/z range shown. The inset shows an expanded view of the isotope envelope of the (M-27H+)27- species. As enumerated in Table 1, the derived molecular masses for the amplicon strands are 27298.518 (+ 0.03) Da and 27125.542 (+ 0.03) Da, corresponding to an unambiguous base composition of A27G19C14T28/ A28G14C19T27 for the double-stranded amplicon, the composition expected for the SARS isolate.
Figure 2
Figure 2
Detection of 3 human coronavirus (CoV) in a mixture. The deconvoluted (neutral mass) mass spectra obtained for the RNA-dependent RNA polymerase primer for the 3 human CoV, HCoV-229E, HCoV-OC43, and severe acute respiratory syndrome–associated CoV, which were tested individually and in a mixture are shown. Forward and reverse amplicons are shown with the measured monoisotopic masses for each strand. Colors of the monoisotopic masses for the mixed spectra correspond to the individual viral species.
Figure 3
Figure 3
Spatial representation of base compositions for the 3 coronavirus (CoV) species known to infect humans. Severe acute respiratory syndrome (SARS), HCoV-OC43, and HCoV-229E base compositions in the region amplified by RNA-dependent RNA polymerase primers (Table 1) are plotted on the A, G, and C axes. T counts are shown by the tilt of the symbol. Within a species, all known isolates of each virus (37 isolates for SARS, 4 for HCoV-229E, and 2 for OC43) had identical sequences in this region. Δbc represents the number of changes in the A, G, C, and T bases needed for 1 species to be misidentified as another in the direction of the arrow. Δm represents the pairwise mutation distance between 2 species, or the cumulative probability of Δbc occurring.
Figure 4
Figure 4
Representation of the mutational distances calculated for the 2 selected primer sets overlaid on the coronavirus phylogenetic tree. Each oval represents grouping of members contained within it; numbers next to the group indicate the maximum distance between any 2 members of the group. Distances are computed as the base 10 logarithm of the geometric average of the pair-wise probabilities for any given pair of base compositions.

Similar articles

Cited by

References

    1. Poutanen SM, Low DE, Henry B, Finkelstein S, Rose D, Green K, et al. Identification of severe acute respiratory syndrome in Canada. N Engl J Med. 2003;348:1995–2005. 10.1056/NEJMoa030634 - DOI - PubMed
    1. Peiris JS, Lai S, Poon L, Guan Y, Yam L, Lim W, et al. Coronavirus as a possible cause of severe acute respiratory syndrome. Lancet. 2003;361:1319–25. 10.1016/S0140-6736(03)13077-2 - DOI - PMC - PubMed
    1. Falsey AR, Walsh EE. Novel coronavirus and severe acute respiratory syndrome. Lancet. 2003;361:1312–3. 10.1016/S0140-6736(03)13084-X - DOI - PMC - PubMed
    1. Ksiazek TG, Erdman D, Goldsmith CS, Zaki SR, Peret T, Emery S, et al. A novel coronavirus associated with severe acute respiratory syndrome. N Engl J Med. 2003;348:1953–66. 10.1056/NEJMoa030781 - DOI - PubMed
    1. Schmidt TM, DeLong EF, Pace NR. Analysis of a marine picoplankton community by 16S rRNA gene cloning and sequencing. J Bacteriol. 1991;173:4371–8. - PMC - PubMed

Publication types

MeSH terms