Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 May 13;280(19):19381-92.
doi: 10.1074/jbc.M414204200. Epub 2005 Mar 9.

JNK1 differentially regulates osteopontin-induced nuclear factor-inducing kinase/MEKK1-dependent activating protein-1-mediated promatrix metalloproteinase-9 activation

Affiliations
Free article

JNK1 differentially regulates osteopontin-induced nuclear factor-inducing kinase/MEKK1-dependent activating protein-1-mediated promatrix metalloproteinase-9 activation

Hema Rangaswami et al. J Biol Chem. .
Free article

Retraction in

Abstract

We have recently demonstrated that nuclear factor-inducing kinase (NIK) plays a crucial role in osteopontin (OPN)-induced mitogen-activated protein kinase/I kappa B alpha kinase-dependent nuclear factor kappa B (NF kappa B)-mediated promatrix metalloproteinase-9 activation (Rangaswami, H., Bulbule, A., and Kundu, G. C. (2004) J. Biol. Chem. 279, 38921-38935). However, the molecular mechanism(s) by which OPN regulates NIK/MEKK1-dependent activating protein-1 (AP-1)-mediated promatrix metalloproteinase-9 activation and whether JNK1 plays any role in regulating both these pathways that control the cell motility are not well defined. Here we report that OPN induces alpha v beta3 integrin-mediated MEKK1 phosphorylation and MEKK1-dependent JNK1 phosphorylation and activation. Overexpression of NIK enhances OPN-induced c-Jun expression, whereas overexpressed NIK had no role in OPN-induced JNK1 phosphorylation and activation. Sustained activation of JNK1 by overexpression of wild type but not kinase negative MEKK1 resulted in suppression of ERK1/2 activation. But this did not affect the OPN-induced NIK-dependent ERK1/2 activation. OPN stimulated both NIK and MEKK1-dependent c-Jun expression, leading to AP-1 activation, whereas NIK-dependent AP-1 activation is independent of JNK1. OPN also enhanced JNK1-dependent/independent AP-1-mediated urokinase type plasminogen activator (uPA) secretion, uPA-dependent promatrix metalloproteinase-9 (MMP-9) activation, cell motility, and invasion. OPN stimulates tumor growth, and the levels of c-Jun, AP-1, urokinase type plasminogen activator, and MMP-9 were higher in OPN-induced tumor compared with control. To our knowledge this is first report that OPN induces NIK/MEKK1-mediated JNK1-dependent/independent AP-1-mediated pro-MMP-9 activation and regulates the negative crosstalk between NIK/ERK1/2 and MEKK1/JNK1 pathways that ultimately controls the cell motility, invasiveness, and tumor growth.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources